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SUMMARY

The report covers the results of an analytical and experimental investi-

gation on the vibrational energy transfer between connected substructures

under random excitation. In the analytical area, the basic foundation and

assumptions of the Statistical Energy Analysis (SEA) method, a major tool

in random response analysis of structures, were examined and reviewed. A

new SEA formulation based on the strong coupling condition of the substruc-

tures was carried out and presented. Also presented were the results of

vibration energy transfer study based on the wave equations applied to

connected structures. In the experimental phase, three simple structural

models were fabricated and tested. Additional tests were performed on

selected substructures which formed parts of the test models. The test

results were presented and evaluated against the analytical data.

The work described in this report was carried out at Northrop Corporation

under the sponsorship of NASA Marshall Space Flight Center. The contract

number was NAS8-28171. The program was monitored by Drs. Hugo Steiner

and Rudolph Glaser of NASA, under the overall direction of Mr. Richard

Schock. The experimental work was carried out by Mr. Paul Finwall of

Northrop. Dr. Paul Selde participated in the analytical work which is

described in the Appendices of the report.
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INTRODUCTION

This report covers the analytical and experimental results obtained

in the conduction of the Contract NAS8-28171 entitled "Investigation of

Vibrational Energy Transfer in Connected Structures." The purposes of the

subject program are (i) to investigate the high-frequency energy transfer

mechanism between two connected structures, (2) to determine the major

parameters that affect the energy transfer, and (3) to determine the para-

meters and their influences to the application of the statistical energy

analysis (SEA) method to the structures. To accomplish the program tasks,

coordinated experimental and analytical methods were applied. Specifically,

conditions were established under which the SEA method can be used to predict

the vibrational energy transmission in two connected structures. Guidelines

were established. A new analytical formulation was introduced to cover the

cases where the substructure intercoupling was strong. In addition, analyti-

cal and experimental definitions of the key parameters relating to the appli-

cation of SEA were examined and applied to structures under hlgh-intensity

acoustic or random mechanical loads.

The statistical energy analysis (SEA) method was first applied to the

structural vibration problem as an extension of the room acoustics approach

in acoustic engineering. Developed in the past decade by Lyon, Smith, Dyer

and associates (References 1-15), the method considers the linear responses

of multimodal structures and the resulting energy flow among the modes of

two or more sets of substructures. The modes of a substructure are called

a subset. Because of the complexity of the high-frequency modal data of

structures and the desire to have a simple tool for enginee;ing application,

a number of assumptions are made in the formulation of the SEA. These

assumptions, together with the related parameters which affect the validity

of the assumptions, are considered to be the key points in determining

the applicability of the SEA method to high-frequency vibrational energy

transfer problems for connected structures.



In addition to the fundamental derivations of Lyon and associates
described above, Zemanand Bogdanoff presented an elaborate formulation of

SEAusing technical terms and analytical procedures commonlyused by struc-
tural dynamicists (Reference 16). Zeman's derivation deviates from the

original SEAformulation in somedetails relating to the coefficients of

dissipation functions, etc. While the end results are essentially the same

as compared to the Lyon and Maidanik derivation (References I, ii), Zeman's

derivation and its reasoning are helpful in making the SEAmethod more com-
prehensible to the structural dynamicists.

The SEAis based on the power flow between groups of linear oscillators.

Between two groups, the power flow is established by a set of dynamic
equations. Each equation represents the moderesponse of one oscillator

and its weak coupling with one or more oscillators from the other group.
The coupling parameters are classified into inertia, damping, and spring

types. For a stationary process, the assumption that the dampingcoupling

parameters for any two oscillators are equal in magnitude and opposite in

sign gives rise to a condition called gyroscopic coupling. Specifically,
a gyroscopic coupling element is defined as one which produces a negative

coupling force on Oscillator No. 2 due to a positive velocity of Oscillator
No. 1 if the velocity results in a positive force on Oscillator No. i due to

a positive velocity of Oscillator No. 2 (Reference ii). The gyroscopic

coupling force on Oscillator No. 2 due to a positive velocity of Oscil-
lator No. 1 if it results in a positive force on Oscillator No. I due to

of the power flow coefficient under the weak gyroscopic coupling condition.

Consider a narrow frequency band for which the modal density of the

substructure may be determined either experimentally or analytically. In

SEA, it is assumedthat the input power spectrum is fairly flat within the

frequency band. Each linear oscillator which is directly excited by the
external source is considered to be subject to a "thermal bath." Under

this condition, the modal energies of all the oscillators whosenatural

frequencies lie within the narrow band are fairly equal and may be repre-
sented by an average value. A final formulation of the SEAinvolves the

response leve_of two or more substructures (which maybe either connected

substructures or a structure and a reverberant acoustic field) based on the

average modal energies of the externally excited and the coupled oscillators.



The SEAmethod has the potential of being a powerful engineering tool

because of its generality and, specifically, its averaging technique, where

the structural and response details are considered only in a broad sense.

The method mayalso be misused if applied indiscriminately. In view of this

background, the subject program investigates the key factors affecting the

SEA,and specially the high frequency vibration energy transmission, so that

the applicability of the method maybe clearly defined. Furthermore, new

analytical derivations are established which tend to clarify certain aspects

relating to the formulation and application of the SEA.

As part of the engineering method development, a user-oriented
preliminary test procedure is developed in the application of SEA. The

purpose of the preliminary procedure is to ensure that the structural model

and the substructure definition implemented by the user will satisfy the
basic assumptions of SEA. The sameprocedure also yields guideline indica-

tions when the limits of the application of SEAhave been surpassed due to

such factors as substructure design, the operating frequency range, and the
like.

In the experimental phase of the investigation, three structural models
were fabricated and tested in order to extract the maximumamountof in-

formation from the test program. The models were designed to consist of
connected substructures with typical variations in interface configurations,
modal density distributions, vibrational energy transmission paths, and

degrees of modal energy diffusion.

The remaining text of this report follows the logical sequenceof

development. After a general discussion, the basic formulation of SEAis

presented where the degree of coupling of the connected structural sets is

discussed. This is followed by a new derivation on the SEAapplicable to

the strong coupling case. The subsequent sections cover the user guide-

lines for SEAand the analytical formulations involving various types of
connected structures. The text is concluded with the presentation and
discussion of the experimental data.



DISCUSSION OF THE PROBLEM

The current investigation emphasizes a detailed understanding of the

mechanism of energy transmission at the interface of connected structures.

In general, the high-frequency energy transmission is in the form of bending

and shear waves for thin-skinned space vehicle structures. The tension/

compression waves may be involved in the picture, but they are considered

to contribute minimally to energy transfer. The major parameters affecting

the magnitudes and modes of energy transfer include the makeup of the sub-

structures, their boundary conditions, the interface configurations (length,

geometry, method of fabrication, etc.), the substructure and coupling loss

factors, the relative amplitudes of the modal densities of the connected

substructures, and the location and type of loading. In order to sort out

the various parameters and to reach a rational solution of the complex

problem, a number of simple test models featuring certain basic similarities

were used. The details of the models will be described in a later section.

In a given connected structure, the degree of modal diffusion depends

greatly on the wave length relative to the characteristics dimensions of

the substructure and, for a thin-skinned substructure, on its thickness.

As the stress waves propagate in the structure, they meet the structural

boundaries and interfaces where the waves are partially or totally reflected

according to the boundary geometry and the constraint conditions. The

infinitely many possibilities of these wave propagations and reflections

cause a randomly distributed wave pattern (i.e., a high degree of modal

diffusion). For waves of medium or long length, the degree of diffusion

will affect the energy transfer through an interface because the directional

properties of the waves determine the amount of energy transmitted to the

neighboring structure. The effect is believed to be less pronounced for

shorter-length waves.

To confirm the energy transfer mechanism in a structural interface,

analytical methods are applied using the classical equations of wave

propagation. In a previous work by Lyon and Eichler (Reference 4), a set

4



of flexural wave equations was established. Simplified boundary conditions

were applied to the interface. The energy transfer rate through the inter-

face was estimated based on the assumption of thoroughly diffused waves.

In the current program, more elaborate equations (e.g., those given by

Mindlin in Reference 50) and more complicated interface configurations are

used. For shell-type structures, the curvature effect and the proper con-

straint at the interface are considered. Typical applications of the wave

equations are described later in the report.

In previous work on the application of SEA, it was found that the weak

coupling conditions are not always satisfied, depending on the frequency

range and other pertinent factors (Reference 49). In addition to estab-

lishing the applicability of the SEA method for specific structures, alter-

native approaches are investigated and reported where non-weak intercoup-

lings of substructures are involved.

To make the SEA method a usable tool for practicing engineers dealing

with high-frequency vibrations of connected aerospace structures, it is

desirable to have available general guidelines on the proper application of

the method. The guidelines presented in this report take into consideration

such structural parameters as coupling loss factors, damping loss factors,

modal densities, etc. These guidelines also include preliminary test pro-

cedures which can be followed by practicing engineers. In the subsequent

sections, the basic foundation of the SEA method, the applicability of the

method to strongly coupled structures, and the guidelines and preliminary

test procedures to the proper application of the SEA method are described

in detail.



BASIC ASSUMPTIONS OF THE SEA METHOD

The theoretical foundation of the statistical energy approach to vibra-

tion analysis is that the steady-state time-average power flow from one mode

to another is proportional to the difference between the tlme-average kinetic

energies of the two modes provided that the following conditions are satisfied

(References I, II):

I. The coupling between the two modes which satisfy the following set

of equations is linear, weak, and conservative (gyroscopic).

ml (Yl + _I Yl + _I _ Yl) + A Y2 + B2Y2 + C Y2 = fl

(I)

m2 (Y2 + _2Y2 + _2 2 Y2 ) + A Yl + BI Yl + C Yl = f2

e

where m, _,_ are the mass, damplng coefflclent, and the natural fre-

quency of the oscillators, respectively. The modal displacements are

denoted by y. In Equation (I), the coupling parameters A and C rep-

resent the inertial and stiffness couplings, respectively. The coupl-

ing parameters B 1 and B 2 represent the gyroscopic coupling when

B 1 = -B 2.

The forces fl and f2 (see Equation (I)) acting on the two modes are

uncorrelated and have spectra that are relatively flat within the

frequency band encompassed by the resonances of the coupled system.

Furthermore, the steady-state time-average power flow from one set of

modes to another is proportional to the difference between the set average

modal kinetic energies of the two sets provided that either:

I. The mode-to-mode coupling is the same for all mode pairs, or,

2. All modes in each set have equal time-average kinetic energies.

(Note that the members of each set are not coupled to each other.)



The coupling factor, applicable to set-to-set power flow is equal to the

sum of all the mode-to-mode coupling factors.

For a given connected structure, the SEA method can be applied to predict

the response levels under high frequency excitation. For this case, it is

further required that the wave patterns are diffused, and the major wave

lengths of interest are small compared with the characteristic dimension

of the structure. Based on the above, the prerequisite conditions of appli-

cability of the SEA to a connected structure may be restated in terms of the

analytical formulations given below:

I. The generalized coordinates of displacements of the connected

structural system satisfy the following set of equations:

mi(J_i + _ixi + _°i2 +k_--_l[AkiYk + " + ] = fi i = I, ,N• xi) BkiY k CkiY k ....

mJ (_.j + _j#j +_j2yj) q- NI[AIjx_= + B_j _ ÷ C_jx_]= _j j = l, .... ,N

where Aji = Aij and Cji = Cij

2. The coupling is gyroscopic, i.e., Bij + Bji = 0. (3)

.

The coupling is weak, ] Aij J , I Aji I << m i, mj;

I Bij I , IBjil <<mi_ i, mj_j;ICijl , ICji

- -2

l<<micoi 2 , mj_j . (4)

In addition to conditions noted in Equations (2), (3), and (4), other

conditions such as uncorrelated modal forces, equal modal energies, etc.,

are also needed in order to apply the SEA to the connected structure.

In general, for a given connected structure, it is not always clear

whether the values of the coupling parameters A, B, and C satisfy condi-

tions contained in Equations (2), (3), and (4).

In the following, the degree of coupling of a connected system used by

Lyon and Eichler is examined.

(2)



In Reference 4, Lyon and Eichler treated analytically the coupled system
shownin Figure I, namely, a mass-sprlng resonator attached to a finite thin

plate. The sameconfiguration is used here to examine the magnitude of the

coupling parameters of the coupled system. The transverse displacement w

of the plate satisfies the following equation:

Kps Cps V_ w * $ + _p w = -if jr(x, t) - f(t) 6(x - Xo) ]
Ps (5)

where Kp is the radius of gyration of the cross section, Cp is the longi-

tudinal wave velocity in the thin plate, _p is the damping coefficient

related to the loss factor qp by _p = qp _, Ps is the mass per unit area,

r(x, t) represents the random loads per unit area, and f is the reaction

force produced by the resonator which is attached to the plate. The cor-

responding modal response equations are:

" " _ I o
5m * _P 5m + _Vm 5m _ --- _m f = Fm(t)

Ps

m-thwhere
_m = modal amplitude of

mode

-th

w m = natural frequency of m mode

(6)

_m ° = m "tb mode shape at x = xo

Fm = modal force corresponding to m "th mode

Using the reaction force as the dependent variable, the equation of

motion for the resonator of Figure I is:

•I • e,

f + _ f • wo _ f - K _ _m ° _m = ab _ fs(t) (7)
m

r 2 K

where _o = M and _o = _ . The exciting force on the resonator mass is

f (t). The reaction force f is related to the displacement of resonator
s

d by the following relation:

K(d - w O) = -f = K(d - _ _ o
m m _m ) (8)

The corresponding power balance equations for the system are:

_P < Ps_ >+_m ° < f _m > :Ps<Fm _m >

< fS/K > -7 _m ° < f _ > = I < f_fdt_ > _ - < fs _ >
m m M

(9)



The above equations show that the coupling of the system is conservative.

Since the equation of motion for the resonator is in a special form, Lyon and

Eichler introduced the following new variables:

G = (K _s ) f

Vm = (K ps )_ _m (I0)

_m = (K/Us) ½ _m

Based on the above, a new set of equations are obtained as follows:

m ÷ _P 6m * Wm 2 Vm * _m ° @ = (K ps )_ Fro(t) (II)

8" * _ e • % _ 8 Y. o = _o2
m *m _)m 6s(t)

Comparing with Equation (1), Equation (ll) satisfies the following conditions:

Aim = Aml = O

Blm = -Bml = _m ° (12)

Clm = Cm I = 0

The above conditions establish the gyroscopic coupling of the system

and the applicability of the SEA method. Based on Equation (II) and the form-

ulas given in Reference I, the amount of energy transfer through the spring

resonator and the finite thin plate may be computed. Consider a simply sup-

ported square plate with a resonator attached at the center. We have:

o_ __m° m _a ' Blm = _m a-=Ps (13)

where a is the edge length of the plate and Mp is the mass of the plate.

In the narrow frequency band with center frequency _o' the ratio of

B/D e is:

(14)



Figure 9 of Reference 4 shows _p = 0.0005 for a 0.145 cm (0.057") steel plate.

So we have:

(15)

It is noted that for the case described above, m i of Condition (4) is

equal to unity. In other words, the weak coupling Condition (4) is now

B/_p << I, which may be restated as: M<<Mp/(16 x 106). Since the latter

condition is not satisfied in a typical set-up, we conclude that the resonator-

plate arrangement is not a weak coupling case. In the following section, new

formulation of vibrational energy transfer involving strong coupling of sub-

structures is described.

,qr

K

= o

hp

FIGURE 1 DIAGRAM O F PLATE WITH ATTACHED RESONATOR
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THE EXTENSION OF THE SEA METHOD TO STRONGLY COUPLED STRUCTURES

A major item of interest in the application of the Statistical Energy

Analysis is the degree of coupling of connected structures. Previous work

at Northrop indicated that the weak coupling condition assumed by the original

workers of SEA was not always satisfied in typical structures. Our present

effort is to determine the extent of coupling of practical aerospace struc-

tures and to explore the additional formulation in structural responses based

on the condition that the substructure coupling is not weak. Our findings

are described below.

Power Flow between Two Modes

The average net power transferred between two linearly strongly coupled

oscillators which satisfy the set of Equations (I) is derived below. The mean

value function equations of Reference 1 are the starting point of this deri-

vation. Thus, the sources fl and f2 are assumed to be statistically inde-

pendent and to have power spectra which are flat as compared to the admittance

spectra of the two oscillators. Suppose an impulse "a" occurs from source f1

only, then by Equation (I)

I mlAgl +AA_2 = a,

AAgl + m2AY 2 = O.

(16)

Accordingly,

_.91 = am2/(mlm2- A2)
= -aA/(mlm 2 - A2)

(17)

From the nature of fl' subsequent increments of Agl and A92 (due to

different impulses) are independent increments of velocity, and therefore

in one second the amounts of energy gained by oscillator I, 2 are

)12>I 2m I < = mlm 2 Dl/(mlm 2 - A2) 2

I sec.

= _A 2 2m 2 <922 m2A2 Dl/(mlm 2 )

I sec.

(18)

where D 1 is the spectral density of fl.

ii



Thus, the power from source 1 is

<fl_l > = Dlm2(mlm2 + A2)/(mlm2 - A2)2

and similarly,

<f2_2> = D2ml(mlm2+ A2)/(mlm2 - A2)2

also, since A_2 = -A_i/m 2 one has

<fl_2> = _DiA(mlm 2 + A 2)/(mlm2 _ A 2) 2

and

<f2_l > -- -D2A(mlm 2 + A2)/(mlm2 - A2) 2

Since an impulse produces no immediate increment of displacement,

<flYl > = <f2Y2 > = <flY2 > = <f2Yl > = 0

(19)

(20)

(2l)

(22)

The above covariances between the sources, displacements, and velocities

define the statistical properties of the sources. The effective force which

the motion of oscillator 1 causes to be produced on oscillator 2 is seen from

equations (I)

f12 = -A_I - BI_ I - Cy I (23)

Thus, for stationary ergodlc process the average net power flow delivered from

oscillator 1 to mode 2 is

(24)PI2 = <f12_2 > = -A<_l_2 > .-B 1<_1_2 > - C <Yl_2 >

Similarly, the net power transferred from oscillator 2 to l

(25)

P2I=<f21Yl > = -A <_1_2 > - B2 <_1_ 2>- C <Y2_l >

For a stationary process

<Y'lY2> = - <YlY2>
<ylY2 > - <_lY2 >

12



and therefore wemaywrite

P21 = A<_'I92> - B2 <ylY2 > + C <Y192> (26)

In order to evaluate the momentsinvolved in Equations (24) and (26) the follow-

ing set of equations maybe obtained from stochastic equations (I)

ml_I 0 0 0 0 B2 -C

0 m2_2 0 0 0 BI C

2
0 B2 0 0 0 ml_I mlo01

2
B1 0 0 0 0 m2_2 -m2_02

2
-mI 0 ml_oI 0 C -A B2

2
0 -m2 0 m2o02 C -A -BI

2
0 -A 0 C ml_1 -mI ml_1

2
-A 0 C 0 m2o02 -m2 m2_ 2

-A <912>

. 2
A <Y2 >

m I <Yl 2>

2

-m2 < Y2 >

0 <ylY2 >

0 <_l_2 >

0 <Yl_2 >

0 <g192 >

<f[gl>

<f2Y2 >

<flY2 >

<f2Yl >

0

0

0

0

(27)

Equation (27) may be solved explicitly and the results used to obtain power

flow PI2' etc. This is accomplished if the coupling is conservative (gyro-

scopic coupling BI = -B 2 = B).

PI2 = -P21 = g12 (81 - 82) (28)

where Pij = the average net power delivered from oscillator i to oscillator J.

8i = the stored energy in system i = <flYi > /%

= the power flow coefficientg12 = g21

4
= (mlm2_12_22 {Am [_Io02 + _2o014 + _I_2(_Io022 + _22_I 2)]

+ (B 2 _ 2AC)(_IO0 22 + _2o012)

+ C2(_ I + _2)_ + B2 _I_2{A 2 [_io024 + _2o014 - _I_2(_io022

+ 82oo12)] - (B 2 + 2AC)(81oo22 + 82o012) + C2 (81 + 82) I ) •

13



Imlm28182(_i 2 - _22)2 + (mlm28iB2 - B2 - 2AC)

2 )2 C 2(61 + 8 2) (Bl_O2 + 82_12) + (B I + 82 +

(BI_22 + 82_i 2)2 A 2 _-I (B2+mlm 281B2)-I (29)

For the special case of weak coupling between two oscillators,

( IAl<<ml,m2; ICI<< mlWl 2 m2_22 , Equation (29), ; IB I<< ml_l, m2B 2 and ml==m2=l)

may be reduced to the form which is identical to the result of Reference l,

Equation (3,4).

Equation (28) shows the fact that the steady-state tlme-average power flow

from one mode to another is proportional to the difference between the tlme-

average modal energies even though the coupling between the two modes is

strong, provided that all other requirements to apply the SEA method are satisfied.

In the following subsection, the power flow between two strongly coupled

sets of modes is described.

Power Flow between Two Strongly Coupled Sets of Modes

Consider two sets of modes. Within each set, the modes are uncoupled

to each other. The power flows between modes of the two sets are assumed to

be proportional to the modal energy difference. The modal displacements of

the oscillators, which are denoted by xl, yj respectively, satisfy Equations

(2) and (3). Furthermore, assuming a stationary process, the time average

of a function is denoted by a pair of brackets < > around the function.

The power balance equations may then be expressed as follows:

N

_i (x_> = Biei-Z. gik (e'ik-_ki) i= i, .... , N (30)m I
K I

N

l=l

m

j -_ 1, .... , N (31)
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or

where

and

mi_i<Jfi2) = B.@' ' - -' (32).ij - gij (eij eji)

(.2> = _j_[. + , _ ,mj _j yj jl gij ( 0ij -_ji )

i = 1, .... , N; j = i, ..., N (33)

! --!

8ij , 8ji are called the equivalent modal energies as defined below:

N

Oij' = 0.1 - E gik (_ik- e-l_i) / #i (34)

k_j

N

! --t _j0.'.]1 = _') +_'_t.i g/j (elj - ej/) / (35)

Oi = (fiXi) /fli (36X

Thus, the expression of the mode-to-mode power flow and the relation

between coupling parameters and g are as shown below:

I !

<Pij > = giJ (Oij - 05i) =" Aij <_igJ > - Bij <xlyj >- Cij <xiYj>
(38)

where the power flow coefficient gij is defined by Equation (29). Equations

(34), (35) and (38) are used for defining the energy terms. Based on this

formulation, the power flow diagram for a typical mode (xl) and the mode (yj)

is shown in Figure (2a). The steady-state tlme-average power flow from one

set of modes to another may be expressed as
N

= I !

PIJ E E gij (OiJ - Oji) (39)

i=l j=l

Taking the summation of the terms of Equation (33) with respect to index

"i" from 1 to N yields

N N

( _> BJiE] °' O:. --' (40)Nmj Bj # = ji + E gij ( 0ji )
= i = 1 11 -

15



Insertion of Equation (31) Into Equation (40) gives the following

expr es s Ion
N

I

I=I

(41)

--!

In Equations (40) and (41) the unknown Oji may be represented In terms of
•2 .2

<yj > and <x f > . This Is accomplished by solving the simultaneous equations

(32) and (33).

, 2 (glj/_j) < (42)elj =[_j (I- slj/_I)<_j > -m i _i2>] /AiJ

e'jl= [mI(l- glJ/_J) <_i2> _j(glJ/_I)<_j2>] /_lJ (_)

where

ZtIj = I - (8i -I + _j-l) glJ (44)

Substituting Equations (42) and 03) into Equation (39), the following expres-

• sion Is reached

N

PIJ = _ Z

i=l J=l

. 2 2>
glJ [mi<xl > - ;J <YJ ] /AiJ (45)

It may be concluded from Equation (45) that the set-to-set power flow

is proportional to the difference between the set-average modal energies

of the two sets provided that either or both of the following two conditions

are true: (I) the mode-to-mode coupling Is the same for all mode pairs;

(2) all modes in a set have equal tlme-average energies .

tlon (45) may be rewritten as

= giJ/A iJ N = (46)
PIJ = J=l N

Furthermore, Equa-

V 2where the M, N, < > are the mass, the mode count, and the mean square velocity

of Set I; and M, N, <_2> are the corresponding functions for the Set J. The

energy flow diagram of two coupled sets Is shown in Figure (2b).
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= BiOi -k_j gik (Otk - Oki) _j-'Oji = _J_J +_i gLJ (6_j --'oj_)

_V

MODE <Pij >= gij (Oij - 0ji )

x i Yj

OF SET I OF SET J

m

8i <_i > 6j <yj2>

(a)

A I

SET

I

SET

J

M<V2> _<_2>

(b)

FIGURE 2 ENERGY FLOW IN TWO COUPLED MODE SETS
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In Reference II, a term called coupling loss factor of Set I is defined

to describe the loss of mechanical energy from Set I, the energy being trans-

ferred to set J through the interface:

o i=l J=l
<V2> = 0

(47)

where w is the center circular frequency of the narrow band excltation.
o -2

condition <V > = 0 in Equation (47) is imposed in order to make this loss

factor independent of the modal energies of the system receiving energy

inflow.

The

It is noted that the coupling loss factor _c= qJ1 of set J is generally

not the same as the loss factor nc nlj of Set I. Instead, we have

N n c o = glJ /_lj
ill J=l

Ways to determine the coupling loss factors analytically and experimentally

for various connected structures will be discussed later in the report.

Estimation of the Response Ratio of Two Connected Structures When One Is

Directly Excited

In the SEA method, an important application is to estimate the response

ratio when the primary structure of the connected structural system is randomly

excited in a narrow frequency band. The response ratio may be estimated by

inserting equation (43) into Equation (41) and setting 8j_ 0 (Set J is excited

through attachment only):

N

'_" (glj/_lj) m i <xj2>

2 i=l

mj <)j > _-- (49)
N

gj + glj/ ij
i=l

18



The above result may be expressed in the following simplified form

2 V 2 MN _c<_> I< >= --

c

(50)

where 8 is the average damping coefficient of the coupled structure J and

is the coupling damping factor defined below:
c

N

= mean of _ gij/Aij for all j's (51)
c i= I

c

--_ nc _o njI _°o

Equation (50) conforms to the general formulation of SEA (see Equation I01,
a

Reference II). Furthermore, a term called the apparent loss factor n
IJ

is introduced in Reference II (Equation 103). The apparent loss factor

is the value of the dissipation loss factor ascribed to set I (on the basis

of measurements performed on Set I) if the observer is not aware that the set

is coupled to Set J, i.e.,

a nlj _ ' n c
n = n + i = n + (52)

IJ njl + _: (N) nc + _

where n and _ denote the loss factors of Set I and J respectively. It is

a is always greater
evident from equation (52) that the apparent loss factor nlj

than the actual dissipative loss factor

Based on the above equation, the mean square of response ratio of the

two mode sets (Equation (52)) may be reduced to:

a

2 n - n
M IJ (53)< _ > I <V 2 > = =

M

19



Conservation of energy requires the following conditions.

A I = n _o M<V2> + PIJ (54a)

a

= n w M <V2> (54b)
IJ o

2

( M<v2> M<_>) (55a)
PIJ = N qc N

-- --2

= n _o _ <V > (55b)

where A I is the tlme-average power supplied to Set I (Figure 2b). Equation (55a)

is an alternate form of Equation (46).

In Reference 4, Lyon and Zichler applied Equation (50) to two coupled

plates (Figure 3a) using the apparent loss factor:

a

n = n+ n (56)
IJ c

Comparing the above with Equation (52), it may be concluded that Equation (56)

is true only when the weak coupling condition is satisfied. The weak coupling

condition is:

N
(57)

In Equations (56) and (57), Set I denotes the vertical plate while the set

J denotes the base plate of the two-plate system.

In the test phase of the program the loss factors and the apparent loss

factor were measured experimentally for various structural models. The acquired

data and the conclusion drawn from these data will be given in a later section.
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GUIDELINES AND PRELIMINARY TEST PROCEDURES

TO THE PROPER APPLICATION OF SEA METHOD

In order to make the SEA method a usable tool dealing with high-

frequency vibrations of connected aerospsce structures, it is desirable

to have general guidelines on the proper application of the method. The

guidelines described here include a preliminary test procedure which can

be followed conveniently by practicing engineers. The purpose of the

preliminary procedure is to ensure that the structural model and the sub-

structure definition implemented by the user satisfies the basic assumptions

of SEA. The same procedure also yields guideline indications when the limits

of the application of SEA have been surpsssed. The procedure is formulated

below.

The theoretical foundation of SEA in vibration analysis demonstrates

that under certain conditions, the average rate of flow of energy between

two sets of modes (representing groups of modes of two coupled systems in a

given frequency band) is proportional to the difference in the set-average

modal energies (Equation_6))

PIJ = N N glj( M<V2> _<_2>)
N N

(58)

where glJ denotes the average value of the power flow coefficients from a

mode of set "I" to a mode of set "J." Equating Equations (55b) and (58)

yields

m

<_2> M _ N glJ

<V2> M N _o+Nglj

(59)

The above equation is equivalent to Equation (50) where "J" represents the

substructure excited through the connecting interface only. Furthermore,

by means of Equation (48) we have

gIJ = nc _oIN (60)
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For a connected structural system, if all the basic assumptions of SEA

are satisfied, it maybe concluded from the above equations that

glJ = gJl > 0 (61)

The proposed test procedure will check whether glJ (Set "I" excited)

is approximately equal to gJl (Set "J" excited) for all frequency bands of

interest. (The ways to determing g values will be described later in the

discussion.) It is expected that the test results will fall into one of

the two categories given below:

I. The values of glJ differ substantially from the values of gJl. It

indicates that the SEA method cannot be applied to the connected

structural model under test.

2. The values of glJ are approximately equal to the values of gJl" It

indicates that the coupling between the connected structures is

conservative and the SEA method may be applied.

For typical structural elements, mass M and modal density n are known

quantities. The dissipation loss factor q may be determined based on the

measurement of the decay time. Another test method called the Q-method may

be applied to determine _. The total number of modes N in a set may be de-

termined as the product of modal density n and the frequency band of exci-

tation _. For a connected structural system after the substructure data

M, N, _,M, N, _ are determined, the values of gIJ may be determined by either

one of the following approaches:

I. Excite primary structure "I" of the system at points chosen at

v2 V2random and measure the response levels < >, < >. The values

of glJ will be computed based on Equation (59).

2. Compute glJ based on equation (60). The values of the coupling loss
-- a

factor qc may be obtained as a function of _, _, _ij by solving

equation (52).

_(n a
IJ " _Q)= (62)

c _.N(rla )/_ij "q

a may be determined either experimentally or analyti-The loss factor qlJ

cally (Reference 4).
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The aforementioned test procedures were performed on the three fabri-

cated test specimenswhich are described in a later section of the report.

The sameprocedures may be used to various types of connected structures. It

will yield guideline information when the limits of the application of SEA

have been surpassed due to such factors as structural element designs, the

operating frequency range, etc.

In the following section, analytical methods are applied to investigate
the energy transfer mechanismin the structural interface of two types of

connected structural systems.

23



VIBRATIONAL ENERGY TRANSFER MECHANISM IN

TWO CONNECTED STR_CTURES

In this section, the mechanism of energy transmission at the interface

of two connected structures is investigated analytically. For this purpose,

the classical equations of wave propagation are employed based on the assump-

tion of thoroughly diffused waves. The results developed are compared with

the test data given in a later section. Two typical structural models are

considered:

I. A two-plate system considering rotatory inertia and transverse shear.

2. An infinite flat plate with an integrally attached half circular

cylindrical shell.

Two-Plate System Conslderln_ Rotatory Inertia and Transverse Shear

The classical two dimensional theory of flexural motions of elastic plates

is good only for waves which are long in comparison with the thickness of the

plate. In case of transient loads with a sharp front, the significant fre-

quencies of modes of vibration are o_ a high order. The flexural wave lengths

of interest may reach the order of the plate thickness. An improved theory,

which takes into account the effects of transverse shear deformation and

rotatory inertia, should be used. In the following, the more elaborate plate

equations of Mindlln (Reference 50) are used to determlne analytically the

energy transfer mechanism at the interface of a two-plate structure (Figure

I-I) which was investigated by Lyon and Eichler (Reference 4) using the

Bernoulli-Euler plate equation. In the approach, the base plate is assumed

to be continuous and supported along the interface in such a way that the nor-

mal deflection vanishes and the twisting moment is continuous. The vertical

plate hypothetically extends to the middle surface of the base plate where

it is fastened along the Interface. The detailed formulation of the flexural
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wave propagation is given in Appendix I. If the effects of the transverse
shear deformation and rotatory inertia are omitted, the result is identical

to that obtained by Lyon and Eichler in Reference 4.

In Reference 27, Heckl used an analogy of architectural acoustics to

characterize the localized boundaries of plates in terms of absorption coeffi-

cients. The absorption coefficient Y is defined as the ratio of the outgoing

wave energy rate per unit length of the Junction line vs. the incoming wave

energy rate in the other plate. The absorption coefficient Y may be related
to the difference between the apparent loss factor na and the loss factor n

as shownbelow:
YC L

g
(na -n) _0 = (63)

_S

where S is the area of the plate, L is the total length of the boundary, and

C is the group velocity for bending waves on the plate.
g

In Appendix II, the effect of the coupling of the flexural and tangential

waves on energy transmission is investigated analytically. In Appendix III,
the transmission of a flexural wave in an infinite plate with an integrally

attached half cylindrical shell is analyzed. The end results of Appendices

I through III are applied in Appendix IV where the energy transfers in various

structural systems are formulated. Specifically, Appendix IV of the report

showsthe energy transfer mechanismin the two structural systems as previously

mentioned. The expressions of the average input power and the transmitted

power are formulated. It also shows generally the orthogonality relationships

for the average power expressions. In other words, the average power involved

in the forces of one modeof motion moving through the displacements of another
modeis zero.

For the two-plate system to be considered, as shownin Reference 4, the

junction absorption coefficient may be computedas the total absorbed power

averaged over all angles of incidence $i (Figure I-I> and divided by the aver-
aged incident power. In the following_ the expression of Y for the incoming

wave in the vertical plate is formulated and simplified. All the symbols used

are defined in Appendix I.
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Based on Equation (IV-7) of Appendix IV, the average Input power per
unit width at an angle of Incldence 41 is given by

w4D1 ci2 0 1 c 1 Plhl

PI = 3 cos $ I + --, w2
2 c I G I D I

(64)

The corresponding average transmitted power per unit width is given by

Equation (IV-32) as

If

'DE )4 1+ 2 ¢2 P2 c2 02h2
PO - 2 IA 2 I cos $2 " +

2 ¢23 G2, _ 2 D2

$2 = c2 sin $I > I, the outgolng power vanishes.sin
el

(65)

By definition, the absorption coefffclent Y may be expressed fn the following

form

7/2

¥ = /-7/2 Po d$1

7/2 (66a)
Pi d$1

- 7/2

where

H i =

gl =

si =

H2P2h2c 2 [_/2
= *" "-_12 I A2+ I 2

hl PlhlC 1

1 - gi _I + gi + gl 2

2 +

I _i (I--7--i-"I K2)

1 _i (I + i-_i K2)
2

cos $2 d$1 (66b)

(67)

(68a)

(68b)

(68c)
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Substituting Equations (I-17c) - (l-17f) into Equation (66) yields

Y= 2r
(I + gl 2 _I + g12)(l + gl 2)- 2gI

( _I + gl2 g22 ] 2+ Sl)( _I + + s2) ½ (I + g2 )

_/2

f cos _l cos %22 d_l

-_/2 I E I,

2 _/1 + g22)(1 + g2 - g2

2 +
(l + gl - gl gl 2)

(69)

where

2

INI =

[_ ¢ l _l_l - 2 + gl sin ¢i

i+_--7 -
2

_I _/I + gl - Sl

'+ ' ]._2 _2_2 - 2 _i + g2 sin_2
+ +

&' _.Il 2
2 g2 - s2

2
l+g 1

+ r 2

l+g 2

(_2

I 2

_I + gl - gl

(_/l + gl 2 + Sl)_

cos
I

]
I + gl ( + g2 - g2 ) 2

COS d_
+r 2 2 _ 2

+ g2 ( _I + g2 + s2)

(70)

D 1 c2

r = . (71)

2 D2¢ I

In general, for a thin plate with thickness h = 0(0.2 ¢m.) and the

_2 2 2interested frequency range f<20 K Hz. The values of g , s as de-

fined in Equation (68) are much smaller than unity. Under this condition,

Equations (69) and (70) may be simplified as follows:

¥ = 2r

_/2

(1 - 2 gl ) (1 - g2 ) / cosO 1 cos d022 d qb1 (72)

(l 4- Sl)(l + s2) (l - gl ) -_/2 17,1
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Jr r
_2 (I + g2)

(I - s2) 121+ (l - gl)
cos _l

i - g2

+ r cos_ 2

_+s 2

2
(7.3)

The expressions for fii and $2 may be represented as

Vc 2 i + s1

sin _2 = _ sin# 1

c 1 i +s 2

[ 2]si cos _ i

_i _I + sin2_i i -

2(I + sin2# i)

(74)

(75)

Two simple eases of 7 of special interest to the present program are

described below. The plates are assumed of the same material.

I. h I = h 2

F 1
2 (I - 28)(1 - s) I-I + I + a sin-I vra I

Y = 9 +(1 + s) L _ J
(76)

a = 2 _ /(l-s)

2. h I<< h2

Let b = hl/h2<< I, then

__ b3 (I - 2bg2)l ( i I g2 ) _ + S 2
Y = 4 (l_bg2) ¢i+s2+ b s2 + bs 2

(77)

After the absorption coefficient is obtained, the corresponding loss factor

data may be computed based on Equation (63).
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Flat Plate with an Integrally Attached Half Circular Cylindrical Shell

In the analytical work on the wave propagation between two perpendicular

plates (Appendix I), the junction line has been assumed to remain straight

and the coupling between flexural and extensional waves was ignored. Since

flexural and extensional waves are always coupled in the cylindrical shell

equations of motion, an analysis was performed where coupling between flex-

ural and extensional waves is taken into account. The results are given in

Appendix II. The formulation indicates that there is a range of angles of

flexural wave incidence for which coupling effects are important. These results

also indicate that the proper boundary conditions should be used for the plate-

cylinder structural systems.

The detailed formulation of the wave propagation in an infinite plate to

which an infinite half circular cylindrical shell is integrally joined along

the diametrically opposite generators (Figure III-l) is given in Appendix III.

A harmonic flexural wave is assumed to be produced in the plate with the angle

of incidence _ which is scattered by the half cylindrical shell. For this

case, in order to simplify the problem, rotatory inertia and transverse shear

deformations are neglected in both the plate and the cylindrical shell. The

proper boundary conditions, in which the coupling between flexural and exten-

sional waves is taken into consideration, are used.

The expression of the average input power per unit width and the average

transmitted power in the half cylindrical shell are defined in Appendix IV_

by Equations (IV-4C) and (IV-34) respectively. Some analytical computation

based on the formulation of Appendices III and IV is given in the following

section dealing with experimental results.
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EXPERIMENTS ON VARIOUS STRUCTURAL SYSTEMS

In the current program, a combined experimental and analytical investi-

gation was performed on the random vibration and energy transfer in connec-

ted structures. In the following, the experimental results are described.

The description starts with the model fabrication and testing procedures.

The test data acquired from the different models are illustrated and com-

pared with the analytical results.

Model Fabrication and Testin$ Procedures

Three simply connected structural models and three separate components

were fabricated in the performance of this experimental investigation.

The specimens were fabricated from Gage 16 (.16 c_ and Gage 22 (.081 cm) Type

304 stainless steel plate stock. Electron beam welding techniques were

employed to fabricate the simply connected structures to minimize warping

of the specimens. The first model has an irregular shaped vertical plate

welded to a rectangular base plate. The second model has a half cylindri-

cal shell welded lengthwise to the base plate along the longitudinal bound-

aries of the shell. The third model consists of welding an open-end circu-

lar cylindrical shell to the base plate. All three models were supported at

the corners of the 16-gage rectangular base plate. The three components

fabricated were duplicates of the model No. 1 vertical plate, Model No. 2

half cylindrical shell, and a base plate which was common to all three

models. The three models are illustrated in Figure 3 and photographs of

the models are shown in Figures 4 - 6. Also shown in Figure 4 is a typical

deformation pattern (center frequency 2668 Hz, half wave length 1.5 inches)

yielded by the visualization technique through the use of lightweight poly-

vinyl chloride particles.

For each of the simply connected structural models and the components,

the following test procedure was employed. A Goodman 390A shaker was attached
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THICKNESS
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(a) MODEL NO. 1

DIMENSIONS ARE TYPICAL FOR ALL THREE MODELS

HALF CYLINDRICAL SHELL
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FIGURE 3 SKETCHES OF TEST MODELS
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FIGURE 4 TEST MODEL NO. 1 AND THE TYPICAL DEFORMATION

PATTERN OF THE BASE PLATE WITH CENTER FREQUENCY

f = 2668 Hz, HALF WAVE LENGTH = 3.8 cm.
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FIGURE5 TESTMODELNO. 2

FIGURE6 TESTMODELNO. 3
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through a KIsstler 931A force transducer to a selected point on the model.

Endevco Model 2222B accelerometers were then cemented to the surfaces of

the test specimen at selected locations. The specimen was then excited in

1/3 octave bands ranging in center frequency from 250 Hz to 16K Hz. During

random excitation in each 1/3 octave band, the rms response acceleration was

recorded for selected locations on the specimen surface(s). In addition,

power spectral density plots of input and response functions were recorded.

This was conducted using a spectral dynamics Model 301c real time analyzer.

A SD 302c ensemble averager was used In conjunction with the 301c to pro-

vide a tlme-averaged value of power spectral density. The tlme-averaged

value of power spectral density were used in evaluating the modal density

of the specimen. In averaging, the discrete frequency components of the

response function are enhanced while purely random components diminish.

Resolution of data In the frequency domain was obtained by the use of a

SD I07 low frequency translator. The translator provided a means of analyz-

ing a narrow band of data at any frequency.

After completion of tests to determine the response ratios and the

modal density under narrow band random excitation, each specimen was sub-

Jected to sinusoldal Input of constant force. The force level was maln-

tained by a SD 105 servo amplitude controller. A very stable SD 104-5

oscillator was used as a function generator and a Hewlett Packard Model

5323A electronic counter provided an accurate means of frequency readout.

The counter displays the frequency to seven place accuracy in .4 sec.

At the major modes of frequency response on the structure being excited,

the 3 db bandwidth was obtained as a measure of damping. Several criteria

were established for the selection of frequencies where damping was measured:

I. The frequencies represented major modes of the surface being

excited.

2. No other modes existed close to the selected frequency.

3. The 3 db down points were nearly equally spaced about the

selected natural frequency.
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A block diagram of the typical instrumentation is shown in Figure 7.

For tests of the three simply connected structural models and the base

plate, the specimens were supported at the four corners of the rectangular

base plate. The supporting structure was non-resonant up to 2kc. However,

some motion was detected at the attachment above this frequency. Between

2kc and 6kc the amplitude of the attached corners was less than one tenth

the input level. At frequencies above 6kc, corner motion reached unity

with respect to the input excitation level. The overall effect of corner

motion at high frequencies was not examined. However, it is expected that

the high damping values measured above 6kc were in part attributed to the

attachment.

The vertical plate and the half cylindrical shell components were

tested separately by suspending them from light strings. No problems

related to the means of suspension were detected.

In each test condition the shaker was in turn, attached through a

.635 cm (.25 inch) d_ameter hole to each surface of the specimens.

Models No. I, No. 2, and No. 3 were first excited at the base plate with

response ratios, spectral density measurements and damping ratios determined.

The shaker was then suspended by shock cord and attached to the vertical

plate, cylindrical half-shell, and open-end cylindrical shell, respectively,

and a similar set of tests were repeated.

Test Data of Model No. 1

The first model (Figure 3a) has an irregularly shaped vertical plate

welded to the base plate. The general configuration is similar to the

model tested by Lyon and Eichler (Reference 4) except that the plate

thicknesses are reduced.

The measured values for loss factors (= 2C/Or) were averaged within
a

each 1/3 octave frequency band. The apparent loss factor ntb of the top

plate, measured at the top plate of the two-plate system when the top plate

is excited, is plotted in Figure 8 vs. 1/3 octave band center frequency.

Also plotted in the figure is the dissipative loss factor q t of the top

plate component. Similarly, Figure 9 shows the plots of the apparent loss
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a

factor _bt of the base plate for the two-plate system and the dissipative

loss factor nb of the base plate component. For most cases, the apparent

loss factors are greater than the corresponding component loss factor.

This is as it should be, as indicated by Equation (52) previously. The

few data points which do not satisfy the above condition are considered

unreliable and are rejected. For the steady-state response measurements

the specimen was excited with 1/3 octave frequency band random force,

and the rms response acceleration was recorded at selected locations on

the specimen surfaces. Typical input PSD plot with center frequency at

630 Hz is shown in Figure i0, while the corresponding response is shown

in Figure ii. The ratios of the measured mean square values of average re-

Vt2>/< Vb2 > when the base plate was excited were plotted in Fig-sponse <

ure 12 vs. center frequency of excitation (broken llne). Also plotted in the

figure are two sets of estimated response ratio data based on:

I. Strong coupling assumption: using Equation (53) and measured

o

a

loss factors n bt' _b' n t:

2

< V t > Mb n

< Vb 2 > Mt

Weak coupling assumption:
a

measured loss factors

a

bt - nb

n t

using equations (50), (56), and

ntb, nt:

(78)

a

<Vt2> Mb Nt ntb - nt (79)

Vb2 > a< Mt Nb q tb

In Figure 12, a line corresponding to

<Vt2> M b N t

<Vb2 > M t N b

was plotted. This llne serves as an upper bound of the actual <Vt2>/<Vb2>

ratio for the weak coupling case in view of Equation (79). It may also be

stated that the line represents a condition where the average modal energies
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in the directly excited substructure and the indirectly excited substructure

become equal. This condition makes it necessary that giJ has to approach

infinity in order for SEA to be applicable (see Equation (39)). Referring

to Figure 12, the data seem to indicate that for the major portion of the

frequency range, the computed response ratios based on the measured damp-

ing factors of a weak coupling case are more close to the actual measured

ratio, while the computed ratios based on the strong coupling case are

higher except in the low frequency end. The difference in the computed

ratio data is believed due to the fact that the lower thickness of the

top plate yields a low n t which gives rise to a high <Vt2> /< Vb2> ratio

based on Equation (78). As will be shown later, the trend is reversed

(i.e., strong coupling equation gives better fit), when the top plate is

excited. Our conclusion is that in this case, the top plate is virtually

cantilevered, the measured mean value <Vt2> is sensitive to the locations

where the measurements are made. In the high frequency end (e.g., 16,000

Hz), the large deviation in the measured and computed results indicates

the uncertainty in damping measurements based on which data Equations (78),

(79) are applied.

When the top plate was excited, the estimated response ratio

<Vb2> /<Vt2> may be obtained by using Equation (53) with the measured

a

loss factors ntb , _b' and _t" In addition, instead of using measured

values of (n_b - nt) , it may be evaluated analytically through the use of

Equation (63) and the absorption coefficient Y. For the test model con-

sidered, the values of Y may be computed based on Equation (77). The results

of Y/Yo are plotted vs. one third octave band center frequency in Figure 13.

As shown in the figure, the straight line result is based on the Kirchhoff

plate theory and the curved line is based on the M[ndlin theory. Similar

to Figure 12, Figure 14 shows the measured and computed values of the

response ratio <Vb2>/<Vt2> when the top plate was excited. The dotted

line represents the response ratios computed based on the theoretical

absorption coefficient ¥ as given in Figure 13. The computed response

ratios based on Equations (78), (79) are also plotted in Figurel4. In

this case, Equation (78), based on the strong coupling assumption, yields

data which are closer to the measured response ratio data.
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In order to evaluate the average mode-to-mode power flow coefficient

g using Equations (47) and (50), the modal density is an important physical

parameter. The modal density of a plate is given as:

np (f) = k/3 (I - 2) Ap/Cphp (8O)

where A is the area of the plate, h the plate thickness, _ the Poisson_s
P P

ratio, and C the longitudinal wave speed of the plate material Equation
p •

(80) gives n (f) = .232 mode/Hz for the base plate and n (f) = 0.1605
P c

mode/Hz for the vertical plate. The analytical modal density data may be

compared with the PSD peak count data in a high resolution PSD plots such

as those generated by the real time analyzer. Typical PSD plot of the

vertical plate component covering the frequency range (580-680 Hz) is

shown in Figure 15. The mode count yields 15 modes in I00 Hz band at the

center frequency of 630 Hz, which compares well with the modal density

data quoted above.

It has been shown previously (Inequality (61)) that in order for the

SEA method to be applicable in a connected structure, it is required that

the two-way average power flow coefficients between the mode sets be equal

and positive. This condition is now examined based on the measured and

computed response ratio data. The values of the average mode-to-mode power

flow coefficients g may be obtained as follows:

I. gbt -- using Equation (59) with measured data of response ratio

< Vt2 > /<Vb2 > when the base plate was excited, and n t.

2. gtb -- using Equation (59) with measured data of response

ratio <Vb2>/<Vt2> when top plate was excited, and _b.

--!

3. gbt -- using Equations (60) and (62) with the measured loss

a
factors _t' nb, and _bt or using Equation (59) with computed

data of response ratio <Vt2>/<Vb2> as shown in Figure 12.

__!

4. gtb -- using Equations (60) and (62) with measured loss factors
a

nt' Db' and ntb or using Equation (59) with computed data of

<Vb2> /< Vt2> as shown in Figure 14.
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-- -- --! --!

The results of gbt and gtb are plotted in Figure 16 while gbt and gtb
--I

are plotted in Figure 17. As described above, gbt is computed based on
--!

Equations (60) and (62). Referring to Equation (62), nc and gbt are negative

if the numerator on the right side of (62) is positive and the denominator is
--!

negative. In other words, gbt is negative (and thus unacceptable in the

physical sense) if the following is true:

N b
rl -- a
t N (_bt- _b ) < 0 (81)

t

For the two-plate system, it was found that in the frequency range (630-
--!

1600 Hz), condition (81) is true. As a result, gbt data are not shown in

Figure 16 corresponding to this frequency range.

Test Data of Model No. 2

The second model has a half cylindrical shell welded lengthwise to the

base plate along the longitudinal boundaries of the shell (Figure 3b). The

a

average values of the apparent loss factor ncb of the half shell of model

Number 2, as well as the dissipative loss factor _ of the half shell com-
C

ponent, are plotted in Figure 18. (Note that Figure 18 also includes one

apparent loss factor plot for model No. 3, to be discussed later in the

a of the base
report.) The average values of the apparent loss factor n bc

plate of model No. 2 are plotted in Figure 19.

The response ratio plots for model No. 2 are given in Figures 20 and

Figure 20 shows the values of <Vc2> /<Vb2> when the base plate
21.

was excited. Also plotted in the figure are the computed data based on

Equation (53) and the measured loss factor data. The response ratio
2 2

plots <V b >/< V > when the top shell was excited are given in Figure
C

21, where one curve corresponds to the measured data, and the other curve

corresponds to the comouted data based on Equation (53).

The analytical expressions of the average input power per unit width

in the plate and the average transmitted power in the half cylindrical shell

are defined in Appendix IV by Equations (IV-4c) and (IV-34) respectively.

48



M

O

f_

O

O

r..

O
D.

.5

.2

.I

.05

.02

.01

\\
\\

.005 i............................

I

4

!

I
I

.002 -

250

160

I --

,/ gtb

I0000 25000

i ..... i

i I
I

I 630 1600 4000

400 I000 2500 6300 16000

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 16 AVERAGE POWER FLOW COEFFICIENTS OF THE TWO-PLATE SYSTEM

BASED ON MEASURED RESPONSE RATIO DATA

49



.5

J-4

I-4

m=

C_

.2

.I

.05

.02

.01

.0O5

•O02 l

i

160

250

I

630

\
,! \

\

gbt

1600 4000

_!

gtb

J i0000 25000

400 I000 2500 6300 16000

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 17 AVERAGE POWER FLOW COEFFICIENTS OF THE TWO-PLATE SYSTEM

BASED ON COMPUTED RESPONSE RATIO DATA

50



c_

5XI0

2XIO

IXIO

-4
5XIO

-4
2XIO

IXIO -4

-5
5XIO

2XIO -5

25O
i

160 400

630

t
i
I

_a
•-- - -o bc

.......w. 77a
bc

C

, 1600

I !

L
I

! P
B

S ? -

I

MODEL NO. 2

MODEL NO. 3 1 i

HALF CYLINDRICAL SHELL COMPONENT--

L
i

I

I

I :

; 4000 10000

I000 2500 6300 16000

25000

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 18 LOSS FACTORS MEASURED AT THE TOP SHELL OF MODELS NO. 2 AND 3

WHEN TOP SHELL IS EXCITED

51



5XI0

2XlO

IXlO

5XlO

_ 2XlO

IXlO

5XlO

2XIO

-3

-3

-3

-4

-4

-4

-5

-5

r
i

i
, I

i.

\
\ ',

I

f

I

!

i
!

J
I

I
p ...... !

q

!

!

F

I
i I

l i

_7a
o----o cb MODEL NO. 2

......N _ a
cb MODEL NO. 3

, t

250 630 I 1600

160 400 i000 2500

J

m_
t

'/

/

4000

I

, i0000

6300 16000

25000

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 19 LOSS FACTORS MEASURED AT THE BASE PLATE OF MODELS NO. 2 AND 3

WHEN BASE PLATE IS EXCITED

52



A
eq .o

>

eq O
>

V

O

<
r_

_0
z
o

O3

I
5 -- _ .....

L
t

2 ........ "_

•5 t-

.2

./

\ /

0

.1

I

/,
I

/

I ,

....... _------

.05

i

!

i

.02- - ÷.- -_........
' i

250

160 400

\

e----_ MEASURED DATA, EXCITED AT AI, PROJECTION OF GEOMETRIC
! _ t t t f

I CENTER OF THE TOP SHELL TO THE BASE PLATE-, _---] 1 i i i

_----, COMPUTED DATA BASED ON MEASURED LOSS FACTORS I

630

!

t

1600

I, I
r i

q .... _ ....

f

10000 25000

___[__

t

4000
i

6300I000 2500 16000

i

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 20 RESPONSE RATIOS OF MODEL NO. 2 WHEN BASE PLATE IS EXCITED

53



A

>

V

0
I,,-I
[...,
.<

Z
0
e,

f

i

I

{
t
t

i

1

II--. --,ll

i

/

T

b

COMPUTED DATA !

MEASURED DATA, EXCITED AT THE

GEOMETRIC CENTI_R OF THE TOP SHELL
i i

1
i

i

; ! :" I\ /:\, TM', E !
' ! i \ t, \ ,\ I - ,\ _,

: 1
• l Ix \,/ /_ \T\ t ! !

.2 .... f ' ........... ,. i " "..t 74'....... +-----_,- ..........
i I i 1/ i : i
I / I i

i ; / F i! i I :

.05 ,- -_ ........... 1 i .......... 1 -+ ........ +..... ;-....

.02 [-_----+- ......

T
i
i

I

------f-....... +-----,..... !-..... ,I-.... ,......
i

i ,
I i

250 ; 630 1600 4000 lOOO0 25000

__._ _ ...... f

160 400 I000 2500 6300 16000

THIRD OCTAVE BAND CENTER FREQUENCY Hz

FIGURE 21 RESPONSE RATIOS OF MODEL NO. 2 WHEN TOP SHELL IS EXCITED

54



Work was carried out to calculate the ratio of the average transmitted power

to the average input power. For this computation, use was made of Equations

(111-9) to (111-13), (111-20), and (III-21), corresponding to various input

bending wave frequencies and angles of incidence for Model No. 2. The re-

sults indicate a rather erratic variation of the average power based on

strain energy rate in the shell with small values for some angles of inci-

dence interspersed by very large peaks. The behavior is attributed to

resonance effects in the cylindrical shell, most likely to the interaction

of flexural and extensional waves. Because of the excessive oscillation

of the power ratio as a function of the incidence angle, our conclusion is

that it is impractical to compute the energy transfer coefficient of this

model using the present analytical formulation.

The modal density of the half cylindrical shell is given in Reference

35 as:

2/o61 dO (82)
nc(f) = np(f) _i - (fr/f) sin40

where

n (f)
P

= modal density of an equivalent plate, Equation (80)

f = 1 _E (83)r 2_R

R = radius of the cylindrical shell

_/2 f _>f
r

0

1

-i

sin v_/f r f < fr

The ratio nc/n p based on Equation (82) is shown as the solid line in Figure 22.

The modal density function has a singularity at frequency f . As an alternate
r

approach the total number of modes below a frequency f is

M (f) = n (f) f 2 /o81 _ fr/f) 2P _ 1 - ( sln40 de (84)
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m

The average modal density n c (fo) over a frequency bandwidth of

center frequency f may be obtained as follows:
O

& f with

M(f + ½ Af) - M(f - ½ &f)
-- o o

nc(fo) = (85)
Af

A computer program was prepared to compute the values of nc(fo)/np(fo) for

each 1/3 octave frequency band from f = 250 Hz to f = 16K Hz. The result
O O

is plotted in Figure 22 by the dotted lines. For the half cylindrical shell

of model No. 2, f is equal to 3120 Hz. Based on the values of nc(f) , ther

upper limit lines for the response ratios similar to the limit llne of

Figure 12 are drawn in Figures 20 and 21. The limiting line corresponds to

<V 2> /<Vb2> = Vb 2> c >c MbNc/McN b in Figure 20 and corresponds to < /< V 2

McNb/MbN c in Figure 21. The average mode-to-mode power flow coefficients

for model No. 2 are plotted in Figures 23 and 24. Similar to the two-plate

system (Figures 16 and 17), the values of gbc' gcb are computed based on

the measured ratios and the dissipative loss factors using Equation (59).
--! --I

The values of gbc and gcb are computed based on the measured apparent and

dissipative loss factors using Equations (60) and (62).

Test Data of Model No. 3

The third model features an open-end circular cylindrical shell welded

to the base plate (Figure 3c). The average values of the apparent loss

a

factor qcb of the cylindrical shell of the model were measured and plotted

in Figure 18. Since no individual cylindrical shell component was fabri-

cated, the values of dissipative loss factor q of the half cylindrical
¢

component of model No. 2 (with the same thickness) were used in the compu-

a

tation. The average values of the apparent loss factor qbc of the base

plate of the model are plotted in Figure 19.

The response ratio plots of the model are given in Figures 25 and 26.

Figure 25 shows the measured and computed values of < Vc2>/< Vb2> when

plate was excited. The plots of <Vb2> /< Vc2 > when the cylindri-
the base

cal shell was excited are illustrated in Figure 26.
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For a finite cylindrical shell of length _, Reference 55 gives the

total number of natural frequencies below a given frequency f. The formula is:

M(f)

np(f) __rn (2_2- i) + sln -I (2 U- I) +

for f < f
r

= f/fr

n (f) f for f >f (86)
p -- r

where f is the reference frequency as defined by Equation (83), and n (f)
r p

is the modal density of a flat plate with the area _R_ (half the cylindrical

surface). The average modal density n c (fo) over a frequency bandwidth &f

with center frequency of f may be obtained using Equation (85). With the
O

modal density data, the upper limits of the response ratios for the sub-

structures of model No. 3 are determined. These limits are plotted in

Figures 25, 26. As shown in Figure 25, both the measured and computed

response ratio data surpassed the upper limit curve for frequencies under

2000 Hz. This fact can be interpreted by the observation that the inter-

face between the plate and the cylindrical shell forms a boundary which has

a dominating effect on the low frequency motions of the based plate. As

a result, the SEA formulation in its present form is not applicable to the

structural configuration in the low frequency region.
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CONCLUSIONS

In this report, the basic foundation and assumptions of the SEA method

were studied in detail. A new formulation based on the strong coupling case

has been generated and presented. As far as the power flow coefficient was

concerned, the previous formulation based on the weak coupling case could

be considered as a special case of the strong coupling case. On the other

hand, in determining the kinetic energy transfer between connected sub-

structures, the presentation of the coupling loss factors and the defini-

tion of the apparent loss factors of a connected substructure were differ-

ent between the weak and strong coupling cases. This deviation in turn

caused a difference in the predicted substructure response ratios based

on the experimental loss factors.

In an effort to determine the power flow coefficients between two

typical connected substructures, three simple models were made which

included a two plate system, a plate and a half cylindrical shell system,

and a plate and an end-connected cylindrical shell system. For the two

plate system, the analysis was carried out to completion. The response

ratio prediction based on the analytical formulation indicated that through

the frequency range of interest, the analytical method was correct to

within the order of magnitude of the mean square response ratios (see

for instance, Figure 14). In evaluating the deviation between the

experimental and analytical results, our conclusion is that part of

the deviation was due to the limitation and arbitrary assumptions made

in the Statistical Energy Analysls method. On the other hand, the measure-

ment of the experimental responses was based on the averaging of the response

data at a number of randomly chosen locations. Since the motion was not per-

fected diffused, the experimental response data was dependent on the random

locations selected. The existence of a partially diffused wave motion was con-

sldered a contributing factor to the deviation between the experimental

and analytical results. Our experience on the SEA method is that even
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though the basic guidelines as developed in the report are satisfied, the

predicted mean square values are usually only accurate to within the order

of magnitude of the experimental results.

For the plate and half cylindrical shell system, analytical formulation

was carried out to define wave motions at various regions of the connected

substructures. In the process, a set of definitive expressions was developed

for the wave motions considering the interface. Based on the wave motion

equations and the response formulation of Appendices III and IV, selected

computation was carried out on the ratio of power input to the cylindrical

shell at various frequencies and angles of incidence. Because of the exces-

sive variation of the power ratio as a function of the incidence angle, it

has been found impractical to compute the energy transfer coefficient using

the present analytical formulation. On the other hand, for this model, the

computed response ratios based on the substructure loss factors and the

apparent loss factors compared favorably with the measured response ratio

data (Figures 20, 21). As far as the average power flow coefficients were

concerned, the variations between the experimental data and the computed

data again covered a band whose maximum at any one frequency might differ

from the minimum value by one order of magnitude.

The third model consisted of a flat plate and a complete cylindrical

shell with one end welded to the flat plate. For this structure, because

of the strong interaction of the interface, it was found that the SEA

method was not capable of reaching any intelligent prediction of the

coupling loss factors, and the energy transfer coefficients. Thls fact

was also confirmed by the guidelines which indicated that the SEA method

in its present form was not applicable to the model under consideration.

In exploring the application of the SEA method, certain limitations were

encountered. In general, for a connected structure it is not uncommon that

the predicted mean square response data and the power flow data differed from

the corresponding experimental data by one order of magnitude. For this

reason, the SEA method seemed at best to serve the purpose of trend predic-

tlon when the guidelines were carried out and presented In this report.

These derivations illustrated the vibrational energy transfer mechanisms

between the specific substructures under consideration.
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APPENDIX I

_LEXURAL WAVE PROPAGATION IN A TWO PLATE SYSTEM

CONSIDERING ROTATORY INERTIA AND TRANSVERSE SHEAR

Mindlln (Reference 50) deduced a two-dlmensional theory of flexural

motions of isotropic, elastic plate from the three-dimensional equation of

elasticity. The theory includes the effects of rotatory inertia and trans-

verse shear in the same manner as Timoshenko's one-dimensional theory of

bars. For this case, the three equations of motion may be expressed in

terms of the plate-displacements as follows:

D V_ _0 _w = _h 3
(I -_) _x _ (I * _) _x - _._Gh '_x _ _x 12 _t _

(z-i)

DJ (i - _)v_ J2 ?y ÷([÷v) _--_@
By

t _w = 9h_ _2_Z

- _-_Gh (_y _y) 12 _)t_

(1-2)

_g
aSGh (V ;w + 0) = ph _-_s w

(I-3)

where

b X _ _ ye
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are

= a constant involving Poisson's ratio (see Reference50)

G = shear modulus (l+v)

D = plate bending modulus _12(l_vm

v = Poisson's ratio

h = plate thickness

p = density of the plate

w = transverse displacement of the plate

_x, _y = changes of slope

- _x t By (I-4)

G' = _ G

The relations between the plate-stress and plate displacement components

_x _y

My D !_Y _x_

= l-v D (_"_y + _x
Myx -2- _x _ )

Qx= >_aGh (_ w + _x)

Qy g2Gh (_-_ + _y )
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and

A single differential equation for w may be obtained by eliminating _bx

_y from equations (I-I) through (1-3) to yield

(V _ _ _£_ _2__ _
12 _t_ 0t_

Consider a semi-inflnite Plate No. 1 cantilevered to an infinite Plate

No. 2 as shown in Figure I-I.

X,U

FIGURE I-i A TWO-PLATE SYSTEM
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Let the incoming wave (see Figure I-I) in Plate No. 1 be of the form

i y sin 01 + x cos O1_
iw t - )wil = e (x & O)

(I-7a)

where, from equation (1-6), the wave speed cm, is given by

CW1 [
I I-_ 48(I-_i s )

Pl 1 + l-_l 2 ± . +

2-- G 'i El G' i El Pl E1 hl 2 w2 1/2
(l-7b)

Associated with the normal displacements are the rotation angles@xi, and_yl,

given by equations (I-I) and (1-3) as

y sin _91 + x cos O I

_xj = iwc ( 1 Pl ) eiW_t - )
w, _ GI , cos _)I cm' (l-8a)

y sin _ + x cos O I
iw £ -

Pl s in _91 e cml )
G I '

(l-8b)

If

ws < 12 GI ' (1-9)

hz s Pl

Equation (l-7b) yields only one real wave speed, the value when the plus sign is

used. In what follows, the range of m will be assumed to be governed by

equation (1-9). Then the outgoing flexural waves in Plate I can be represented by

y sin _)I

w = A 1 e c_l + B I e e I_D /Ol C(_I

(I-lOa)

( ) iw x cos O I
_xol = - W icwz cos _I 1 Pl A I e cWl

C_l _ G 1 '

I _/GI ' 1

+ CVz 1 + BI ew_x + sin g O I C 1

_1 g singOL

C_I g

(I-lOb)
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_yol = i_ c i sin

I 1 Pl I AI e

c
I _ /GI ' 1 w_ Ix

1 + Bl e
• e sinS_

0¢ _--
cuo I

t y sin 01

/C_I '

+ 0%' CI ]
(I-lOc)

where from equations (I-l) to (1-3) and (1-6)

_i = /( )2(I + sin 8 O l) l l-_)le

Gx ' EI

O_1 I =

G- + c°sa O1
, Et

I/2

c_l_ Gl w2hl 2

1/2

48( 1 -V1 '_ )

PlElhi2 e

(I-lOd)

(l-fOe)

Note that the terms multiplied by CI are the so-called thickness-shear mode

and are associated with a state of zero normal displacement. In the range of

frequencies considered here only one outgoing wave is harmonic while the other

two are of the Rayleigh type with an exponential decrease in amplitude as the

distance from the joint increases. Similarly for Plate 2 the outgoing waves

are given by

U_ = A 2 e c0_ * B_ + e eiOJ \ --'c_2

(l-lla)
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_Z2

i-

iCcu _ COS 0_ C Z COS

+ -iw - c

G_ ' A_ e

O_

I _/G2 ' 1

I *

_S_ sins @e

c_ s

* -W_ e ' z
B2 + e-W_2 z + sinS_ C 2 e ]

eiW ( t - ysin02c_ )

(I-lib)

_y_
+ , cos'n [Il

CLt_ 2
Z COS@ 2

P2 A2 + -10_- e Cb] 2

G 2 '

_/Gm ' )+ I I + O__ sin_02

2
CO.I_

for z > o and

Be+ e-W_ez + _e 'C2 +e-w_ 'z

.(I-llc).

u 2- -= A 2 e C_U_ + B 2 ysinO 2 )

eiCU t

COL_.

(I-12a)

1

-*z_ = - cu cos 02
- i_u

P2 A 2 e

G 2 '

Z COS_ 2

c_

sine_ C_ _U_ ' z eiO_ t' cu_e

(I-12b)
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_Y2 = iwc
If I P2

sin_

c_t_ G2 '

(l..IG.,)..co_ O_ _ sin_02

c_ 2

for z < o. Here

Lt_2Z
e

z co s_._

c
u._

-¢_e' C2

(I-12c)

sin 0 2 sin 01

c_ Ctol

and, with w restricted also to the range

(_-13)

12 G2 '

he 2 Pe

(I-14)

c_ - -_ Ge ' F_ G '

2

I-V22F_ )

I/2

48( I- v.e _ )
+

_E2_2w _

I12

(l-15a)

(_-[Sb)

(I-I 5c)
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The nine constants of integration are determined in the present problem

by the following conditions:

_z2+ = _z_ = -_xl (I-16a)

ye = Y_

+

U = U =W = 0

t

Myz2 = Myze

(l-16b)

(l-16c)

(_-16 d)

_/yl = O

(l-16e)

t - = 0
Mz2 Mzm t Mxl

(l-16f)

along x = z = 0. With the use of equations (1-5) and (I-16), equations (l-16d)

and (l-16f) may also be written as

_y2 _y2 (1-16d) '

Az _z

D_ • D l
_z _z _x

- O
(1-16f) '

The quantities wl, $xi' and _yl are the sum of the incoming and outgoing

waves in Plate I. The first of equations (I-16a) and equation (I-16b) state

that Plate 2 is continuous so that lines along the y-axls originally perpendicular

to the middle surface rotate the same amount. The first of equations (I-16¢)

and equation (I-16d) state that Plate 2 is supported along the y-axis in such a

way that the normal deflection vanishes and the twisting moment is continuous.

The remaining conditions imply that Plate I hypothetically extends to the

middle surface of Plate 2 where it is fastened along the y-axis in such a way

that a line originally normal to the middle surface has the same rotation in

the x-z plane as a normal line in Plate 2 and remains in that plane.

72



Substitution of equations (l-7a), (1-8), (I-I0), (I-II), and (1-12) in equations

(1-16) yields the following relations for the constants of Integration

A I = -(I + B I )
(l-17a)

s coss 01

Cl _ _i += c_i_ Bt (l-17b)

GI ' _i ' s sins 01

c°sS 81

C

CUl

+ + _ DI _i s ÷ s
A s = - A_ = _B2 = B2 = I Owl B1 (I-17c)

2 D2 0_ s + Cos s

C_ s

Cos s

. _ D_ _l + s (l-17d)
C s = C_ _ I cwl Bl

2 Ge' _' De s sins

C_12

BI = 2i c _ GI'
cLuI

_I 3 . Co ss _91

( C++ 1

_ - sin s _91 Co ss • 1

A = e I + + --- _l

2 sin 2 @2/c_, 2 Ds 01 s + cos _ q)s(_I -

Cu_s

Cos s 0=

cu_ _
. sin s @_

G s '

2 + O_'

2 2 2

e= - sin _/c_2

- £

- c_ 2 D_ _ aa G1 '" cos @_+ I D_ _ + cos _ Oe

c

1

%

P'_ _ Cu_ Cos O_

/

(l-17f)
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If the effects of the transverse shear deformation and rotatory inertia are

omitted, Equation (I-17c) will be reduced to

A_* = -B2* = _2i(k I r/k 2) cos 01 {i cos 01 - /I + sin _ @l

-I
r[i cos A* ]}

where k i = w/C i

r _ D c_ (l-17g)

2D2 c_i

Equation (l-17g), a special case of equation (I-17c), is identical to the

result obtained by Lyon and Eichler in Reference 4.

If the incoming wave is in, say, the z>0 side of Plate 2, the analysis

is modi#ied by adding the incoming wave solution

_zi2

ui7
y sin @2 - z cos @_I

c_

(I-18a)

* I 1 _ 1 cos @2 ei_ (t - Y sin 02 z c°s _)e )
c (I-lab)-

= iuJ C C _ G 2 '

y sin O_ z cos @_ )= i_) c __ sin 0 2 c

_ue c _ G2, _m
_ue

to the outgoing wave solutions for the z >0 side of Plate 2 and deleting the

incoming wave solution for Plate I. Satisfaction of the boundary conditions

then yields the following values of the integration constants:
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A1 = _ BI - l i Cure Cos 02 * C_ 1 , )s •
A cur _ G2 ' (O_ cj2

(lti,)E0_ S in8 02

O 2
o_

(I-19a)

Cos 2 01

c i (21 + A 2
- CWkS __ AI = (l-19b)

Pl /(GI ' Oil ') c_ 2 + eose 02 Dt _2L_)

cct_ _

- + (z-19c)
B2 = A 2 = A 2 - 1

+ +

B_ = (I * A2 ) (I-19d)

co s 2 01

I I!C_ ÷ = I p_ cu_ _ A I + I +

C2" O_' G2' 0_8 sin z 02 _ sin _ 02
- c'ct2 o_ 2

CU 8 C_ _

(I-19e)

2 12G'
in a plate, the wave speed cm given by

If m exceeds the value h_ p I) (2)
Equation (l-To) has two real solutions, say c_ ( and c_ . In addition, a

real wave speed cw (3) can be associated with the thickness-shear mode. Then

the outgoing waves can be represented by

2 iw [t y sin 0 (j)- xcos 0 (j) ]

Wo = E A e [ - Jj=l J cwtJ)

(l-20a)
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2
Cj)

XO - iw_ C
W

j=1 cos 0 ( j ) / 1
W

(j)

i_ t - Y sin
A. e C (J)

x cos 0 (j) ].

Aasin #(3)eiW [ t -

(3)
y sin @

(3)
x COS 0 ] (1-20b)

_yo

A
J

2 (j)
= iw_ C_

j=l

eiw I t -

(j)
y sinO

(j) -I

x cos 0 /

I(j)
CUD J

with

t 0(3) iwAS cos e

(3)
y SinO x cos 0 (3)

Sin 0 (I) _ Sin 0 (2) _ sin 0 (3)

-cw(1) cud (2) cw(3)

] (1-20¢)

(I-21a)

(2)
C
W

+
48([-v_ )

pEh _ J }1/2 (l-21b)
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1 = / P 12_2

C (3)" %/ G

(I-21c)

Thus, different coefficient relations must be determined from the range

12 G__i < _ < 12__2___G'_

h__ _ hl_

(I-22a)

and for

12
plhl_ (I-22b>

In the range of frequency value given by equation (I-22a) the waves in Plate 1

have exponential decay and harmonic space variations while in Plate 2 the space

variation is harmonic only. When the frequency is governed by Equation (I-22b)

both plates have only waves with harmonic space variations.
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APPENDIX II

EFFECT OF PLEXURAL AND TANGENTIAL

WAVE COUPLING ON THE TRANSFER FUNCTION

In this study the effects of rotatory inertia and transverse deformation

are neglected to better isolate the effects of flexural and tangential wave

coupling. Consider a plate, the middle surface of which is the x-y plane.

The pertinent equations of motion and force-strain relations are given by

a2w
DV 4 w + ph a_ t = 0 (ll-la)

a2u l-u a2u (I-u2)P a2u l+u _j_2v _ 0 (ll-lb)
+ 2 ayT - E at _ + "7- axay

l+v a_u + l-u a2v 2__Ly" (t-v2)p 2__T_y_ (II-tc)
2 8xay 2 ax 2 + ay _ -- E at _ = 0

N
x

N
Y

Eh (au +vOv ) (II-ld)= ax Tf

Eh (a__v + v@u ): i'_' ay a'_ (II-te)

N = Eh I 8u

M ._

x

= --D{ a2.-_w.y ay 2

-_(I- v) a2---_w
8 xay

8v ) (ll-lf)+

u 82w+

_ (II-Ig)

+ U_ ) (II-lh)

"(II-ll)
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8 _2w)% ° -_g (

_:-o÷ (_,w)
3' Y

The effective transverse shear forces are given by

__ 8 8 [8'w 82w]% = % + _ = --D_ 8-_ + (2-V) 8-_

_ , a__ __ ra,w + ,_ , _'_-I

The positive force and deformation directions are shown below.

I_f _" / I/'7,.P" >xu

Ny (a) Positive Force and Deformation Directions

M " _l
, Xy • '

M (b) Positive Moment Directions
Y

FIGURE ll-i POSITIVE FORCE AND DEFORMATION

DIRECTIONS 05 A PLATE ELEMENT

(n-l j)

(II-lk)

(_I-ll)

(I I-lm)

N
xy
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An incoming flexural wave can be expressed as

w i

where

i_o(t- v sin_-x cos_)---- e c (II-2a)

(ll-2b)

Outgoing flexural waves are given by

- i_ x cos_______W = A e c

o
(II-3a)

with _ = J l+sin2_

Outgoing tangential waves can be written as

u = B e-Xc°x + B e e c
0

! sin_ e-X_x Xc_____v = i/
o _ _ B + sin ¢ e--_X)eiC°( t " y sing)c

with _=_(sin#c. )2 -- (1_V2)pE

=V\c /-

(II-3b)

(II-4a)

(II-4b)

(II-4c)

(II-4d)

z,w /

I _4ate I /_y,v

0,___/
_ ; ' ._._2

_X)U

FIGURE 11-2 INTEGRALLY JOINED PERPENDICULAR PLATES
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Consider now an imcoming flexural wave in Plate 1 of the form

i_o(t, y sin_,-z cos_)Uli = -e cI (II-5a)

Outgoing wave displacements in Plate 1 are

-ioo z c9s¢_ -o_ I im t -
Ulo = AI e ci + _I e e ci (II-5b)

io XI ) + sin_i/cl B I e . c)

(II-5c)

= ( e')llOJz "_I¢0Z _--C!
(II-5d)

For the x >o and x<o sides of Plate 2, the outgoing displacements are

given by

+ = ( + COx --+ X2Wx c2 (ll-6a)u 2 B2 e "12 + B 2 e" eiO) t--

( -X2 - e-X_o_x ) io)(t- _ sin @21v+2 = i sin @2X=/c2 B+ e"X2tux + sin_2/c2 B_ e c 2 ,

(II-6b)

( _x_ ._o_xI _no_lw,+ = _+,o- _ + _2+ _ e_(_'_--c2 (II-6c)

and

u_ ( -)l_ox - - _ x c_= B; e + B2 eX_ eiO_(t- ysin_?) (II-7a)

i2V[ = -i sin#2/c21= B[ e )_2c0x + sin_2/c2 -- IIB2 j2cox ei_O t- ysin_:,.2

(II-7b)

( _x_o_o__ x)_._no_1w_ = A T e c, + A[ e¢0_' _ e c, (II-7c)
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with

si___ sin_ (II-8)

c! c 2

c 2
Note that if -- sin 91> I, there are two Rayleigh waves rather than one

cl

plane wave and one Raylelgh wave.

At the joint the displacements and rotations must ,be continuous. Then

at x=z=O

UI = U_ = U_

V I = V + = V[

W I = W2+ = W;

8Z aX

(ll-9a,b)

( ll-9e, d)

( ll-9e, f)

8w[ (II-9g,h)
8x

These eight deformation continuity conditions are supplemented by four force

and moment continuity conditions (see Figure 11-3)

_

X2

N

zl _ Nyzl

FIGURE 11-3 JOINT FORCES
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M + -- M- + M = 0 (ll-lOa)
X2 X2 Z1

N+ (If-lOb)-- N- -- O = 0
X2 X2 --Zl

(II-lOc)N + -- N- + N = 0
xy2 xy2 yz_

--+ L- + N = 0 (II-lOd)Qx2 _ 2 z1

which can be expressed with the aid of the deformation continuity conditions as

-- D2\ax2 _x--_") D, + v =\az" _y2/ 0

(II-11a)

l-v_ 8x 8x ay 2j = 0 (ll-llb)

2(I+_) 0x ax 2(l+v I) 8y az

aw,
-- D2 _ ax 2 8x 2 i-v12

(II-11d)

The substitution of equations (II-5), (II-6), and (11-7) into equations

(11-9) and (II-II) yields twelve simultaneous equations for the determination

of the integration constants.

-+ +i + A l + A, = B+ + B 2 = (ll-12a,b)

sin0,/c, B, + X, _, = sin@2/c 2 + _2 -+
A.1 sin01/Cl 12 B2 + sin q_2/c2 B2 =

-- [ sin02/c2

\ X 2 B_ + sin02/c2i2 _" ) (II-12c,d)

++ i,+= A3 + X;BI + BI = A 2 (ll-12e,f)
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_c,(,-A,)+_,:,:o,-(:cos_2 A_+
c2 c2

C 2 C2

: [:_<,_+ (: A,-
D2

r-

[(l-sin2$= ) (A +- A: ) --

+

(ll-12g,h)

(I + sin2_2 ) (i2_-7:)] 0

_2ci { i:l + (l-v o sin2_]1

E2h2

(::-121)

(,--A,>_o+°,+[,--:,-__:n'0_:,°,}
+ :,(+,+++:)]-o. _::-,,+_

_) 2 B + + _,c, ' sin #+/c!

"I" _ [sin_2c2 (B+ + B: ) + sin_2/c ' (+,+++:)]:o
(ll-12k)

[( + :,+Il-v_ _+- V+ _I ) B+ + (I-_ +

_+[,(A:+A:)_o,'0,-°=(:++::I]=0 (II-12_)

The solution of these equations can be expressed as

_2
(ll-13a)
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D2 (!L) 2 (A+ - A: )i + A I - _ c2

4

+ l'(l-Vl)4 sfn2¢1 [i

[I (.i. ;]K(A++ A; )
_ - _2-_

(sin¢2/_c2 )2]K (A+ + A_ )
_2 k2

(II-13b)

(II-13c)

(II-13d)

(ll-13e)

(II-13f)

C 2

I
+ (l-u_) sin2_1 (_:- i cos02 _. 2D2ci l

I - X2X2 + 1- 12u ])

(II-13g)

i- (l-vl) sin2_!
+ 2D__7.._L (C_I- i cos @_) + i cos 2

D I C 2 2--

- i cos_, i+(I- • - i 2D2 .9_
_i D_ c2

$ = (1-_ DI C_Cq
c_ E_h 2 _2

I--Isin%c2 )'

isin%_,= )2
I --[ c_

(II-13h)

(_-13_)
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G2h2 _2 / sin#i/c I

+ 21
c_ E! h I)%1 [k sin 0_ci

(l ['- L I- vJ Ycu"

[ Isin_, \2

c--C,J

)'-

- (t-vO _'|-'
)%1J

l l-v,_ )%, -2 (l-v,)^,j

(i_-13j)

= l-i _2 ] )%1 sinel/c '

sin_I/Cl _ + 4f (I-_ D2o_2cos_2.

)%1 ] O_ E.h I)%1

(sin _'/C,_1, sin ¢'/C!)%, ) ] ( sin_2/c 2 X_ )-'
)%2 sin _2/c2

[l" V ( sin_I/ct)2)%, --(l'Vl)-_I_I ]-'
(II-13k)

The effect of flexural and tangential wave coupling depends on the

parameter _ . The results for uncoupled motion are obtained with _ equal

to zero. If _ is large, however, the effects of coupllng can be slgnifl-

cant. In order to get a better idea of the magnitude of _, let it be

rewritten as

with

If _/ is

coh2csc2_2

small, _ can be approximated by

_ -- 3-/-F/ -_L_L_ _, sin _,
2 _ h 2

(II-14b)

(zz-15).
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so that _ will also be small if the massratio is of the order of unity.

However, _ becomeslarge when_ is in the vicinity of unity. This is

possible in the range of values of _ of interest for a certain range of

values of _2" For example, for a steel plate with

E2 = 30x 106 psi = 20.69 x I0_ N/cm2

v2 = 0.3

P2= 0.00777 #sec2/in4 = 6.813 gm/cm3

h2 = 0.062 in = 0.158 cm

= 2 _ x 104 rad/sec

is equal to unity if _ is equal to 7.18 °. The magnitude of the coupling

effect is very sensitive to angle, however, for if _2 vanishes (implying

large _), then ]½

/ J (II-16)

which is small again.
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APPENDIX I_I

TRANSMISSION OF A FLEXURAL WAVE IN AN INFINITE

FLAT PLATE WITH AN INTEGRALLY ATTACHED HALF

CIRCULAR CYLINDRICAL SHELL

INTRODUCTION

The structure under consideration consists of an infinlte flat plate

to which an infinite half circular cylindrical shell is integrally Joined

along the diametrically opposite generators (Figure III-I). A harmonic

flexural wave is produced in the plate and is scattered by the half cyl-

inder. The object of the investigation is to determine the scattered

wave distribution in the plate-cyllnder combination. In what follows

rotatory inertia and transverse shear deformations are neglected in both

the plate and the cylinder. Flexural and extensional wave coupling is

consldered_ however. The effects of transverse shear and rotatory inertia

in the cylinder can be considered with the use of Reference 53, if neces-

sary.

ytVp

z

w

h
c

ion 4 /

y,J

/°

h
Region : p

/
/

Re

_n of

Flexural Wave

x_u
P

FIGURE III-I PLATE-CYLINDER COMBINATION
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FLATPLATEANALYSIS

The plate is considered to be divided into three regions, region 1

for which x>R, region 2 for which x<-R, and region 3 for which -R<x<R.

In region 1 the incident and reflected wave deformations are given by the

following equations (see Appendix II):

U+p= [B+ el_(X-R) +_+ _x-R)] el°J(t - y csin_ ) (lll-la)

Isin#/c -_x-R) _/ _+ -_oJ(x-R)]eiOJ(tv+p = i _ B+ e + sin_ c e

Sinc_ )

(lll-lb)

[ i_c°s_ (x-R) ic0 cos¢ (x-R)w + = e c + A + e- c + _+ e"
P

i¢o(t . Y sin_ )e c
(lll-lc)

In region 2, the outgoing wave deformations are given by

u - [B- e_(x + R)
P

+ __ jCO(x eiO_ y sin¢c (lll-2a)

V-p = -i B eIc°(x + R) + sin_c_/
- +R)] .B- e_w(x

ic0 (t - Y sin@ )
e c

(III-2b)

ico cos@ (X + R) CO
Wp = A-e c + _- e

(II1-2c)

Finally in region 3, waves are directed into the interior from both

boundaries so that the deflections may be written as
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U °

P =[B° A._O(x - R) _'o A.O_ (x + R)e-X0)(x + R) + C O e + e"

(III-3a)

V o

P

i
+

sin ¢/c

IB o e-XW(x + R) _ CO eX_(x-R)l

_o e-_O)(x + R) _ _o e_x-R)}l eioO(t" y sin¢c )

W o

P -i_ cos____¢_(x + R) i_ cos____(x-R)= A ° e c + D o e c

+ _o eO_ (x-R)

m

+ A o

(III-3b)

(III-3c)

wi th

(II l-4a)

= _I + sin2¢ (lll-4b)

)% : -- E
P

2(1 + Up) pp
E

P

(III-4c)

(III-4d)

9O



CYLINDRICALSHELLANALYSIS

The equations of motion of a cylindrical shell with transverse shear
deformation and rotatory inertia neglected maybe written as (Reference 54)

0 2 U 02U h R2 i + V 82v
1 Vc(1 + k) c Pc c 82Uc c c

8_ _'c + 2 802 Kc -'_ + 2 O_DO

+ Vc 8_ k 3_ 3 2 8_802 =

(III-5a)

i + _ 82u
C C

2 81_80

02V 32V

+ _ (1 + 3k) c c
2 _ + 8 02

3Wc 3 - v_ _ 0
+ 80 _ k =a ao

PchcR= 32Vc

Kc

(III-5b)

½

_U
C

a_

O3u c 3v c

2 00

_3V

3-_c k c

/a_i 
+ wc + k \3_4 +

Pchc R2 02Wc

+ K----_0 t 2 =

cq 4 W C2 34wc + +

a_2ao _

(III-5c)

with

k

K C

= 9R

2m

12

Eh
C C

= T-I-_2
C

(Ill-6a)

(_II-6b)

(III-6c)
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The forces needed are those on the straight generators of the cylindrical

shell (Figure 111-2) which are given by Reference 54.

Ne Kc + v _c
= R [ a8 + w c -_ + k\ 88' + we /J

- -- _ + k +

Me = k _\a-gaee-+ "_ + "_ ae'/

"Qe = k_R
aaw aw 3aw i- v _2u c

c c + (2 - re) _Oc8 + c+ ae 2 \_g'e

(Ill-?a)

(III-?b)

(III-7c)

_7p-/j

(III-?d)

No

Me

\
/ \

/ w Y

Ne

FIGURE 111-2 STRESS - RESULTANTS ON GENERATORS

OF CYLINDRICAL SHELL
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Let the solution of Equations (111-5) be of the form

U

C

i_o(t- Y, sin_= U e_8+ c _ (lll-8a)

ioJ(t- y sin_)
v = V e_0+ c (IIl-8b)
C

TO+ i°)( t " y sin@)c

w = W e (III-8c)
C

with U, V, and W constants. Then the substitution of Equations (111-8)

into Equations (111-5) yields the following set of equations to be

satisfied.

l-v l+v

__c (i + k)3_2--@2+_ 2 c i@Y
2 2

l+v

c i_F 72+_2
2 2 c (i + 3k)@ = + _ k @

I_-_ Ck_ Y- i_ k_% %+ k _ +

U

V

bl

W

=0

(lII-9a)

with

= o_R sin 0
C

_chc

Q=_ f _R

(III-9b)

(III-9c)
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Thus, for Equations (111-9) to be satisfied Y must be a solution of the

blquartlc equation

ozIY$+ (2 _i-- °t2@2+ °_3_y6

(0_+g_12@2+ _I_ @4) _2

@4 42 + (0LI5-- 0L16 @2 4" _17 ) @

@2 4 @2_ ( ot_8 + o_9 + °_2o@ ) _2+ ( _21 + _22@ 2+ _s @4)_4 = 0

(III-lO)

where

_I =

O_2 =

Ol3 =

OZ4 =

l+k

4+

7 - 3u i -p

Ck+ 3 e
2 2

2
k

3 -P

C
+k

I -p
C

- k 22(4 _) + (7 -- 5 Uc ) k + 3(1 -- mc)

(III-lla)

(III-llb)

(III-llc)

(III-11d)

Ol5 ----

Oe6 =

Ol 7 =

6 + 3(2 -- P ) k- p2 k 2
C C

k i - Pc
2k

3 "PC 9 "PC

3_ + 2
C

k

(III-lle)

(III-llf)

(Ill-llg)

2
w

-s i - V
C

(lll-llh)
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(x9 = 6 + 3(2 -V + V 2) k
C C (III-11i)

Ii - 3v

O_io = 4 + 2 c k + 9

i -V
c

k 2 (III-llj)

2 -V
i c

CX,1 = _ + 2-_-_- + k
C

(Ill-Ilk)

I

0/12 = _" --

5+;/ --2V 2
c c

i -V
C

3 -V
C

3 "_

4
k (IiI-i1_)

0_13 =

3-u 5 - 8V -u 2
c c c

3 +
i -re 2(1 -V c)

k (III-i lm)

3 -v 3+V
c 1 c

_" = i-v 7 - i-v c
c

(lll-11n)

O_Is = (i + 3k)Ii + (1-V:)/k 1 (111-11o)

o_,, = 2Vc(l + 3k) (III-11p)

_17 = (I - k)(l + 3k) (III-11q)

(_18

3 + 2Vc 3 - 2Vc
= + 2

k I -V
c

3- 7V
i c

_9 = _ + i -V
C

3-;/ i - 3V
c c

- +
_2o i - V

c t-_
k

+ 3k (III-11r)

(III-11s)

(IIl-llt)

2(1 + k)
_21 =

(l - _) k
(iii-11u)

3 -V
c + 3

(222 = '(l - V )k

c

(III-11v)
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Equate.on(III-I0) has eight solutions which are denoted by

--± T n = i, 2, 3, 4
n

The ratios of A and B to C for each value of T are given by

(III-12)

U = i_
W

(III-13a)

V = --_E
W

(III-13b)

wi th

I
i l'_k' ')i -I: c ,,/4 I -V c - k_2+ 3 _. _ _/2

k

+ (vc+k_5 _2 c (l+ 3k)_22

(III-13c)

i
E = --

A

i -//
c

2
2 +k + 2 I + _ k@ 2- (I "Vc) "

+k _2+ +_.i..._ k _ n_

(III-13 d)

i "Pc 3 -_
2 -- (i + k)_4+ Y2[<_-2 c (I -_ •

2 2 2

(III-13e)
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Then the expressions for the displacements, slope change, and pertinent
stress-resultants may be expressed as

4 (An _n0 e_Tn0)u = i¢ _ 6n e + B (lll-14a)c n= I n

4 (An Tn _ _?n8 )
v - _ c T e - B (lll-14b)

c n= I n n n

4 (A Tn0 -_n0)= _ e + B e (III-14c)Wc n= i n n

/-_Wc ) ( )(An"/nfl _)I i _ Yn i + £n e -- B e-Tn
R \O0 Vc = R n = I n (lll-14d)

NO = KCR _ 1 -- 2 2e n + U¢_n + k 1 + "/ e + Bn en

(lll-14e)

I -v c 4 I 1 (An Tn0 e-TnO)N0g_ = 2 KciR _bn _= i Tn (I + k) 6n +6 n- k e -- Bn

(III-Ihf)

( "nO)l + T2 _ v _2 e + B e
M0 = Kck n = i n c n (lll-14g)

[i )¢2+ _/2
QO = _-_n = 1}'n[ - (2 -v c n i-Vc_ _2(3_ n -- 6n) ]"

A Yn8 -Tn0) (Ill-14h)e --B e
n n

The common factor eiW (t - cs_)

Equations (III-14) for simplicity.

has been omitted from each of
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BOUNDARYCONDITIONS

The 24 constants of integration in the preceding equations are deter-
mined by the boundary conditions that must be satisfied at the two lines of

contact of the plate and the half cylinder. These are (Figures III-i and

iII-3)

u+ 0 (lll-15a,b)= U = W

p p c

+

v = v ° = u (Ill-15c,d)p p c

J,
w = w ° = v (lll-15e,f)
p p c

aw_ 8w ° (0w c )= ---K = i
8 x 8x - _ 8e Vc

(lll-15g, h)

_ Q_ + N8 = 0

N+ -- NO -- Q8 = 0
x x

N+ -- N o + = 0
xy xy NS_

M+ -- M ° + M 8 = 0
x x

(III-15i)

(III-15j)

(III-15k)

(III-151)

at x = R, 8 = -- _/2 and

U ° = U = --W

p p c

V ° = V = U

p p c

W ° = W = -- V

p p c

owo low )---P- = __2_ = i c
8x 8 x - _ 88 Vc

(lll-16a, b)

(III-16c, d)

(Ill-16e, f)

(lll-16g,h)
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O m

Qx Q_ + N8 -- 0 (IIl-161)

N o -- N" -- _e = 0 (lll-16j)
X X

N o -- N -- N8__ = 0 (lll-16k)xy xy

M°x -- Mx -- M8 = 0 (III-16_)

at x = -R, 8 = _/2. From the force-strain relations (see Appendix II)

and the continuity conditions for displacements, the last four of

Equations (III-15) and of Equations (III-16) may be expressed as

D + w o
P _ w -- -- N_ = 0p p (lll-17a)

Eh

u - u - ___
p P P

= 0 (III-17b)

Eh

PP _ ( + v ° )2(1 +v) 8--_-- v -- + _= 0
p P P Nes

D Wpp

%

-- w ° _ -- M
p / 8

= 0

(III-17c)

(III-17d)

at x = R, 8 = -- -_ and
2

_2

o Wp)- = 0 (III-18a)

Eh

3 (u o - - = 0 (III-18b)

E2h2 8

P p -- NS@ 0
(III-18c)

8 2
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Substitution of Equations (III-I - III-3) and (111-14) into Equations

(lll-15a-h), (lll-16a-h), (III-17) and (111-18) and manipulation of the

resulting expressions then yields the following set of equations

-2_¢oR i +6 B o ± C o ±B+± B = e 4 I 6 -6

(lll-19a,b)

2 6 B o 4- C o +F+4-B" = _=1-6 ÷_)(_o• _o)

(e" ) ( ) 2 (Xo 4- _o )2i¢oR cos_ i + N A o 4- D o 4-A+ ± A" = c 4- i -77 -N

(lll-19c,d)

(lll-19e, f)

(IIl-19g,h}

-2_00R
B o + C o =2 _ _ l--e + @6 n

f_1 n = i si c

( 1 '
(An_ B )sinh (_n _) I +$ K c _ Ynn _ = -- EhR¢O n= i

P P

-2 ko_Rl+e

(1 -_)@ I(1 + k)6n+E n -- k]

sin _ -X )2

+
(i-v) kp I I + ?2n --(2-Vc )_2+ _62 _ n -- 3En) @21 • (An-_)_o_(__)

(lll-20a,b)
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4

_° + _o =__2 Z
A1n= 1 [_Cl- -2_R)+++o(l+ -2_+R)])i e e •

4

Bn sinh ?n = EphpPR 60 n = 1

+
(_in_;_i-_>k11+_n_-_2__>_2+I_____C+

)k2 A [i--(s, in;/cl2 ]

•(An-Bn)coshI_n+> (II1-20c, d)

A 0 -- D O z

_ n= I e + e'2_°_R/C)En - tl -e "2(OOtR/c) (1 +

C ) +_'n A-. oos_(,,n _)n n
= --1

n c ic I 'wR cos _ I --7 n

4

Z

2Dp(_) 2 n= I

6 n + t' _26n + k(l + 31n2)I ].C

(An-- Bn)sinh(Tn 2) (lll-20.e, f_
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[ I 2i scos0)2 _ io) R cos 9 i ÷ e c En
A 4 n= I c

(i -2i¢0 R cos¢ i(I )] _
- - e c + En j ?n (An BnlC°shI_n _I

Kc i Ill +.y2 ) c [I- 3,_ _n + _26n + k (i + _2 #I1= (_)2 n = I n -- re@2 k + _! n Vc n "
2Dp

(An--Bn) sinh(_ n _) (lll-20g,h>

S o m C O _. n m

4

A2 n = I sin¢/c

An + Bn cosh Yn 2) E h R¢o
P P

4

n= 1

(1--V)_b[(1+k)6n+¢n- k!

(An + Bn) sinh(_n 2) (lll-21a,b)
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I R) I )]= A---2 n = i _ I + e" +@6n I-- e

7r (I +_)K c
(An + Bn) cos}a(_n _) = E h RoO

P P

(i--re) @[(I + k)6 n + C n -- k]

c[< .]i- .in_/=

+ (sin_/c) 2 (i--vp)k II + 3/2--(P.-Vc) :@2+ I_[6- 3EJ@211

n 2 _n .

{An + Bn ) sinh(yn 2) (lll-21c,d)

A o

4

+ Do _-_! Z
A3n= 1 [_R°t (i - e-2_°dR/c) En- (i + e-2_'R/c) (i + Enl] •

_n (An + Bn) slnh(_n 2)

4

Z
n _- I.

%

_ u @2_k- ic
c / COR cos@ n I)c n °

(A+B) oosh(_n -n n _) (lll-21e, f)
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_o + _0 = 2 _ io_ R cos@ i -- e"2iO_R cos@/c 6

A3n= I c n

- 1 ÷ e"2i_R cos_/c (1 + En) _n n + Bn sinh(_n _)

4

KC

2Dp(_) 2 n= l

i 72 _ _21k + c

%

+ V
n c / o_R_

[1 l /}( ) /_n">-- _i E + v _i_n + k i + _ A n + B coshn n c n n (llI-21g,h)

with

XX

icos¢

)( )( -2Xo_R -2 XoJR
sin_ic 1 ± e lse

-- _ l_e ±e

(III-22a)

(III-22b)

(III-22c, d)

c [o(l_e-2_°_c)(l_e-2i_RoosOIc)
-2¢o_R/c i _ e-- i cos_ i ± e

(III-22e, f)

It will be seen that Equations (lll-20a, d, f, and h) constitute four equations

for the coefficients (An - Bn ) (n = I, 2, 3, 4) while Equations (lll-21b, d,

f, and h) constitute four equations for the coefficients (An + Bn ) (n = I, 2,

3, 4). Thus, the solution of the problem has been reduced to the solution of

two independent sets of four equations.
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APPENDIX IV

ENERGY TRANSFER IN VARIOUS STRUCTURAL SYSTEMS

TIME AVERAGES OF HARMONIC COMPLEX QUANTITIES

In what follows we shall be dealing with time averages of quantities

of the form Re A e Re B e , where A and B are complex numbers.

The integration of the quantities are carried out for one period T----2.._
_0 "

T

i /oT (Re Aei°_t)(Re Bei°Jt) dt=T 14T < (Aei°_t + Xe'iCut)•

I Be i°_t + Be -i°)t ) dt i Be2iOJt + _ _e-21_t

+ (A B + A B)] dt = l( )A B + A B (IV-I)

where the tilde over a quantity indicates the complex conjugate of that

quantity. If A is equal to B, the rlght-hand-slde of Equation (IV-I)

becomes ½ A A.

AVERAGE INPUT POWER

The average input power per unit width for a flat plate governed by a

Kirchhoffplate theory is given by (Figure IV-19 and Appendix II)

T

Pi = -- M ----- dtx @x_t

/0' ) [D I[02w O2w c92w 03w

: ¥ li_x + v ay--'_oxo--7- 9"_]I]+ (2 - V) OxOy 2! @tOw
dt

(Iv-2)
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(a)

Kirchhoff Theory Plate Forces

(b)

Mindlin Theory Plate Forces

FIGURE IV-i STRESS RESULTANTS ALONG A PLATE BOUNDARY

with w i given by

w:Ree1_(t+_) (Iv-3)
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equation (IV-2) becomes

x>j1_/D t + x + ePi = _ Re ei°J c ieiO_ (t+ c dt

w4D
(IV-4a)

It should be noted that the input power is actually constant in this case.

Since c is given by

c

equation (IV-4a) may be written as

p. = phw2c.
i

(IV-4b)

(IV-4c)

If shear deformations are included, the input power is given by (see

Figure IV-Ib and Appendix I)

I _ M -- + M + dt= x _t xsr c_t Qx _

I T O@ x O_y O_ X l-Y _y + --

_-¥ D[\T;_ + v Oy TT + q- Ox _y _t

I+ G h _x + @x _T dt
(Iv-5)

With the deformations given by (Appendix I)

io)(t + x)w = e c

(IV-6a)

_x = --_-- -- --_ / e c (IV-6b)

@y = 0
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Equation (IV-5) becomes

P,

l

o_D

o_4D

.o
Re ie ic° t +c

- --_) +

dt

(IV-7)

The wave speed c in this case is given by

i

C

+ ½ l-l'V K +
2 -- ')l-Y K @

2

½
(IV-8a)

wi th

2

.(qc.>G'/p

(IV-8b)

Then Equation (IV-7) becomes

/ [ ]'--_- 2 + ½(1--r "')_

(Iv-9)

The quantity given is thus the ratio of the power required for the Mfndlin

and Kfrchhoff plate theories to yield a flexural wave having a given trans-

verse amplitude. The ratio is less than unity for all values of @, ranging

3 I
from approximately 1 - _ • for every small @ to 2_r_ for large @. It

should be noted, however, that Equation (IV-9) is valid only for

J 2 (Appendix I).(1- V)K 2
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ORTHOGONALITY RELATIONSHIPS FOR AVERAGE POWER EXPRESSIONS

We can show generally that the average power involved in the forces of

one mode of motion moving through the displacements of another mode is zero.

For the Kirchhoff flat plate, for example, with

w
o

= Re F(x) e - c

with the average output flexural power given by an equation of the form of

Equation (IV-2), and with use of Equation (IV-l) we have

io_D

PBK - 4

[d3 (sin02]-- _ -- (2-I)) 0O c /i _d_ F

Fd3F ( co sin_)2 dF ] _+ - (m-v) c

icoD F d3F _ d3_ d'F dF

= _ L d--x!r dx_r F -- _ d--x

d2_ dF (co sin@)2 (dF _ d_ F)I+ _ dx 2 c d_x F dx (iV-ll)

However, F and F satisfy the equation (Appendix II)

d4(F,_) ( cos )'idx 4 -- 2 c n@
co4

dx _ _ (i - sin4_) (F,_)
-- 0

(IV-12)

ii0



If we multiply the equation for F by F, the equation for F by F, and sub-

tract the two we have, after some manipulation

d F _ d3F d3_ d2F dF d2_ dF

d-_ L _ - F_ d×2 dx + _ d-7

-- 2 (¢°sin_)2c (dFd_x _ _ _d_ F)]
= o (iv-t3)

which states, then, that the average power is a constant and thus is inde-

pendent of x. The implication of this result is that any product terms in

Equation (IV-II) which are functions of x can be ignored. This further

implies that the modes are orthogonal and that only exponential solutions

having pure imaginary characteristics contribute to the average power.

For the Mindlin plate the deformations are given by (Appendix I)

1w = Re W(x) e c

(IV-14a)

io_(t - X sin_) (IV-14b)
C_x = Re X(x) e

_y = Re Y(x)
ioJ(t m $_._ ) (IV--14C)

e c

with the average output flexural energy given by an equation of the form

of Equation (IV-5), the use of Equation (IV-l) yields

i_D { ( d_ ¢0sin_ ) ( dXPBM = -_- _x + iV-- _ X --c

c T Lkdx + i OJ sin@c _

)] )d--x -- i X _ + G'h%- L_,d_ + _ w
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dW icoD X -- -- X + _ y m-- _ + X W = -_-- dx d_x 2 dx

_ dY ) l+P i cosin_ (_y ÷ X_)-- Y _x + -_- c

dW _ dWG'h W-- - W + -
+ -'6- dx

(_v-15)

But W, X, and Y satisfy the equations (Appendix I)

+ E/,( I - _2)" D -- _ c

l+V

cosin_ dY G1h dW
c dx D dx = 0

(IV-16a)

i +P co sln_ dX I -P d2Y [ pco2
i

c dx + 2 _ + [ E/(I-V 2)

G1h

D

12]o'h slno-- co in____._____Y + i D c W = 0 (IV-16b)

= 0

and X, Y, and W satisfy the complex conjugates of Equations (IV-16). Now

multiply the three equations of the first set respectively by X, Y, and W,

add the three resulting expressions, and subtract from it the sum of the

three equations of the second set multiplied by X, Y, and W respectively

to obtain the result that the derivative of Equation (IV-15) is zero.

Thus, conclusions similar to those for the Kirchhoff plate hold.
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For inplane motion of either a Kirchhoff or Mindlin plate the average
power involved in extensional motion is given by (Appendix II)

PE = _ _x + _y _ + -_- _y + _x _-[ dt

(IV-17)

with u and v given by (Appendix II)

u = ReU(x) eiw(t - y sinO), C (IV-18a)

v = Re V(x)
(IV-18b)

Equation (IV-17) becomes

_ iKo0 _Id_U
PE

4 I _dx
+ iv

w sin_

c _)u_(du

- iv_s--_-_v ) _ + l-___vc 2
dV oo sine
_x +i c

 sino]1_xx - i c u V

iKw [ d_ _ dU

LU_ -- U +dx _fx i +2 p i WcSin# ( UV

) (d_ dv)]+ _v + li---vv Tx -V_

But U and V satisfy the equations (Appendix II)

d2U I'P w2 (_ P ) U i + P2 G 2
co sin@ dV

c dx

(IV-19)

= 0

(IV-20a)
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I +_ i _ sin_ dU + i - V d2V _ oo2rsin 2¢ _i- _)p ]

2 = d-_ 2 dx_ 47--- - E J
V 0

(IV-2Ob)

while U and _ satisfy the complex conjugates of Equation (IV-20).

Then multiplying Equations (IV-20) by U and _ respectively, adding the

two equations and subtracting the sum of the complex conjugates multiplied

by U and V respectively yields the result that the derivative of Equation

(IV-19) is zero. Thus, the same conclusions apply as for the Klrchhoff and

HindlIn plate average bending power.

Finally the case of the integrally connected half cylindrical shell

and flat pl&te combination can be shown to yield similar results. The

average power per unit length of the half cylinder Is given by(Appendix II_

T

/0[0 ) o ouo-- -- C +
Po = 7 _" _ -- Vc Q0 O'-_ N0_ @t

ov ]c dt
+ Ne 0"-'_

10II wl lw 1_ C C _ C

- _ k _ + w + Vc O_ _ -- -- Vc @0 c

03W @W 0 3 W l- ( (_2U

c Vc c

c _ + (2 - uc) O_ + -- --

3-_/j 0 t + -7 _ + --"£ + k + ---£ --,£

+ ou (...c )].v00 + w + // ._.&c + k + c "_c c O_ _ w dt

(IV-21)
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and w given by (Appendix III)With Uc, Vc' c

u = u(0)
c

i (COt-_)
e (IV-22a)

v = V(O) e i(¢°t -_)
C

(IV-22h)

w = w(0)
c

i(oJt -@_)
e

(IV-22c)

Equation (IV-21) becomes, with the use of Equation (IV-I),

iK _ I [ W daW

c dW d2W dW d_W d 3 _
P = _ k _-_ _-_ d0 _-_ -- W _-_ + W_'-_3
o

2 (i @2) i{W
d_

" 7_ dW ) 1 -11c i@ (WdUWd-O 2

UdW UdW + -- + I + __c k VW -- WV
d0 d0 dO 2

+ dU _ dU
2 c (I + k) U d-_ - _-_

+ c i @ (UV + VU) + V dv V dV
2 d--O - d-e

(IV-23 )

Now U, V, and W satisfy the Equations (Appendix III)

i -V 2 I+V

c (i + k) dU + (_2_ @2) U - c
2 de 2 2

d2w i )2 d02 i@ v + k @2 W
c

0 (IV-24a)
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l+v [ i-_ ]
c dU d2V c (i + 3k) V

3"Vc @2) dW+ I+ _ k
= 0 (IV-24b)

c iV d ( _2 c __2 _-_ -- iV Ue + k U + I + 2 k_2 dVd0

d4W d2W

+ k _-_ + 2 (I ._2) k _-_ + [I + k(l +_4) --n2]W =
0

(tv-24c)

and U, _ and W satisfy the complex conjugates of Equations (IV-24). Multiply

Equation (IV-24c) by W and subtract from it the sum of Equation (IV-24a) mul-

tip]led by U and (IV-24b) multiplied by _. Subtract the complex conjugate

of the resulting expression from it to obtain the result that the derivative

of Equation (IV-23) with respect to 8 vanishes. The usual conclusions follow.

AVERAGE TRANSMITTED POWER

The results of the preceding section can be applied to obtain expressions

for the average output power in the various structural systems under consideration.

a) Perpendicular Kirchhoff Plates with no Motion of the Joint Line

For this problem the outgoing wave displacement function is given by

(Reference 49).

(IV-2 5a)

116



for x >0 and by the negative of the expression for x< O, with

_2 = Jl + sin2_= (IV-25b)

(IV-25c)

The average outgoing power is given by Equation (IV-2), for x>O and by
the negative of Equation (IV-2) for x <0. ThenEquations (IV-II) and (IV-13)

yield the total output power in both parts of plate 2 as

Po = -- 2 P2h2¢°2c_¢ C= C= cosO=

c*/ ,
if sin02= 2/c_ sinO1<l

0 if sin02 = c_'_A_'¢ sinO>l

(IV-26)

b) Perpendicular Kirchhoff Plates with Motion of the Joint Line

For this problem the outgoing wave displacements are (Appendix II)

[I . eightYsin°21]u+2 Re B +2 e-X2c°x + B 2 e ) c-2 --

v_ = Re [i( sin_/c*2 + e'X2 c0x X2 - e-_20)x )X 2 B2 + sin_/ , B+ "
_c_

+
w 2 =

i_(t_ y sin02)]e c*
' 2

[I xIRe A + e-i°Jx cos#2/c_: + A2-+ e-_° o_2 A_ e iu) - c* )

and for x<0 by

(IV-27a)

(IV-27b)

2

( IV-2 7 c_

- [I sin° l]u : Re B7 eX2C°x + _[ e ) e c*
2

(IV-28a)
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v; =- Re [i( sin_cw212 B; eA_X + _' _[ e_2°rx) IeiC°(t - y c2*sin#2 )sin__

(IV-28b)

e c_ (IV-28c)

The average output power is given by the sum of Equations (IV-2) and (IV-17)

for x>0 and by the negative of these expressions for x< 0. Then the use of

Equations (IV-If) and (IV-19) and the conclusions reached in the preceding

section yield

Po = -- (PB + PS) (IV-29a)

where

= + _ A_ A 2PB P2h20_2c2 * cos#2 (A, A++ _" )

if sin_= c.2sin_< I (IV-29b)c,*

= 0 if sin_2= c__ sinai > Icw
i

and

j /(
PS = 0 if oJh2/_< i-V E2 I-V_) sin2_

2 _ P2

if I -_ /4E2/(I-V_) sin2#2 <
z %

J E'/(1-v;)< o_h2/_ < sin2_2
P2
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( ! X_I 2 B 2 B= +_ _ _/_) ( -+--+

+

,/if $-_ > E2/(I-V_ ) sini¢2
p,

¢) Perpendicular Mindlin Plates with no Motion of the Joint Line

(IV-29c)

The average outgoing power per unit plate width for a plate edge with

x >0 is given by Equation (IV-5) and by the negative of Equation (IV-5) for

a plate edge with x<O. The deformations are given by Appendix I, in the

c2

case when sin@= = -- sin@ I< i, as
c I

W 2 = e c2 + B + e- e C2

i -io_ Ixl cos ¢2o_ ic i cos_2 (_ -- G_2 ) A+ e c2

(IV-30a)

( ) x,]+ l + 2 P21G;_ B2+ e'°J°_=lxl + C=+ sin2@i e

oz2 - 02

ico(t - Y sin@? ) (IV-3Ob)
e c 2

+_ 1+ ____ B2 e
0_2 C2
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+ _ c+e_ ixl]ei_(ty csi°°)
j

(IV-30c>

with, provided _h/_ < I_-2_
@P2

IJ I
(IV-3la)

OL2 = I + [ }'

_/2=__41 + [½ (1- _K2)_212 4-½ (1 + _K2)_lsin2_2

% + i----_, (Iv-31=)

(IV-31d)

Then it can be shown from Equations (IV-15) and the conclusions of the pre-

ceding section that

~+
eo = -2p2 h2°)2c'2 c°s#2 A+ A2 "

(IV-32)
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If sin¢2 = c_ sinai > I, the outgoing power vanishes.
cI

d) Integrally Joined Half Cylindrical Shell and Flat Plate

For this problem the shell displacements are given by (Appendix III)

u = i_ An e + B ec n = I n n

, ( _nO -_0)ei( ) _Iv-33b_v - _ C ?n A e -- B e n oJt -_
c n = i n n n

w = _ A e + B e e
c n= i n n

_rom Equation (IV-23) and the conclusions reached in the preceding section

we have

= c--i- i T 1 + _2 _ _2 1 6 + -- E k
o n R n n 2 n 4 n

_ if+ 2) 1½ en 2 _n -- ?n £n -- i-_ (I + k)_2_24 n

" (An _n -- Bn Bn ) (IV-34)

where the summation is over all values of n for which _ is pure imaginary.
n
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